论文标题

随机链中的多部分纠缠

Multipartite Entanglement in the Random Ising Chain

论文作者

Zou, Jay S., Ansell, Helen S., Kovács, István A.

论文摘要

量化多个子系统的纠缠是相互作用的量子系统中一个具有挑战性的开放问题。在这里,我们专注于两个长度$ \ ell $的子系统,分别由距离$ r =α\ ell $隔开,并量化了其纠缠效果($ {\ cal e} $)和相互信息($ {\ cal i} $),以关键的随机链中。两种疾病平均$ {\ cal e} $和$ {\ cal i} $都被发现是规模不变和普遍的,即独立于混乱的形式。我们使用任何距离的$ {\ cal e}(α)$和$ {\ cal i}(α)$在任何距离上找到一个常数的$ {\ cal e}(α)$,使用渐近强的疾病重新归一化组方法。我们的结果在质量上与清洁式模型中的那些和旋转基态的随机旋转链的质量不同,例如旋转 - $ \ frac {1} {2} $ Random Heisenberg链和随机的XX链。对于随机单元状态,$ {\ cal i}(α)/{\ cal e}(α)= 2 $,在随机的链中,该通用比率强烈依赖$α$依赖性。系统之间的这种偏差与单个子系统的纠缠熵的行为形成对比,为此,各种随机的临界链和清洁模型都提供了相同的定性行为。因此,研究多部分纠缠提供了随机量子系统中的其他通用信息,而不是我们可以从单个子系统中学到的东西。

Quantifying entanglement of multiple subsystems is a challenging open problem in interacting quantum systems. Here, we focus on two subsystems of length $\ell$ separated by a distance $r=α\ell$ and quantify their entanglement negativity (${\cal E}$) and mutual information (${\cal I}$) in critical random Ising chains. Both the disorder averaged ${\cal E}$ and ${\cal I}$ are found to be scale-invariant and universal, i.e. independent of the form of disorder. We find a constant ${\cal E}(α)$ and ${\cal I}(α)$ over any distances, using the asymptotically exact strong disorder renormalization group method. Our results are qualitatively different from both those in the clean Ising model and random spin chains of a singlet ground state, like the spin-$\frac{1}{2}$ random Heisenberg chain and the random XX chain. While for random singlet states ${\cal I}(α)/{\cal E}(α)=2$, in the random Ising chain this universal ratio is strongly $α$-dependent. This deviation between systems contrasts with the behavior of the entanglement entropy of a single subsystem, for which the various random critical chains and clean models give the same qualitative behavior. Therefore, studying multipartite entanglement provides additional universal information in random quantum systems, beyond what we can learn from a single subsystem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源