论文标题

增强姿势变化的面部修复的质量,并以当地弱特征感应和gan先验

Enhancing Quality of Pose-varied Face Restoration with Local Weak Feature Sensing and GAN Prior

论文作者

Hu, Kai, Liu, Yu, Liu, Renhe, Lu, Wei, Yu, Gang, Fu, Bin

论文摘要

近年来,面部语义指导(包括面部地标,面部热图和面部解析图)和面部生成对抗网络(GAN)近年来已广泛用于盲人恢复(BFR)。尽管现有的BFR方法在普通案例中取得了良好的性能,但这些解决方案在面对严重退化和姿势变化的图像时具有有限的弹性(例如,看上去正确,看左,笑等)。在这项工作中,我们提出了一个精心设计的盲人面部修复网络,具有生成性面部的先验。所提出的网络主要由非对称编解码器和stylegan2先验网络组成。在非对称编解码器中,我们采用混合的多路残留块(MMRB)来逐渐提取输入图像的弱纹理特征,从而可以更好地保留原始面部特征并避免过多的幻想。 MMRB也可以在其他网络中插入插件。此外,得益于StyleGAN2模型的富裕和多样化的面部先验,我们将其作为我们提出的方法中的主要发电机网络,并特别设计了一种新颖的自我监督训练策略,以更接近目标,并灵活地恢复自然和现实的面部细节。关于合成和现实世界数据集的广泛实验表明,我们的模型在面部修复和面部超分辨率任务方面的表现优于先前的艺术。

Facial semantic guidance (including facial landmarks, facial heatmaps, and facial parsing maps) and facial generative adversarial networks (GAN) prior have been widely used in blind face restoration (BFR) in recent years. Although existing BFR methods have achieved good performance in ordinary cases, these solutions have limited resilience when applied to face images with serious degradation and pose-varied (e.g., looking right, looking left, laughing, etc.) in real-world scenarios. In this work, we propose a well-designed blind face restoration network with generative facial prior. The proposed network is mainly comprised of an asymmetric codec and a StyleGAN2 prior network. In the asymmetric codec, we adopt a mixed multi-path residual block (MMRB) to gradually extract weak texture features of input images, which can better preserve the original facial features and avoid excessive fantasy. The MMRB can also be plug-and-play in other networks. Furthermore, thanks to the affluent and diverse facial priors of the StyleGAN2 model, we adopt it as the primary generator network in our proposed method and specially design a novel self-supervised training strategy to fit the distribution closer to the target and flexibly restore natural and realistic facial details. Extensive experiments on synthetic and real-world datasets demonstrate that our model performs superior to the prior art for face restoration and face super-resolution tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源