论文标题

L形平面图的理论

A Theory of L-shaped Floor-plans

论文作者

Raveena, Shekhawat, Krishnendra

论文摘要

现有的图理论方法主要局限于具有矩形边界的地板图。在本文中,我们引入了具有$ L $形边界的地板图(边界只有一个凹角)。为了确保L形边界,我们介绍了地板平面的非平凡性概念。如果无法减少凹角的数量,而不会影响其中的模块邻接,则具有至少一个凹角的直线边界的地板平面面板是不平凡的。此外,我们为存在与适当三角形的平面图(PTPG)$ g $相对应的非平凡的L形地板平面图提供了必要和充分的条件。另外,如果存在,我们为其构建而开发了$ O(n^2)$算法。

Existing graph theoretic approaches are mainly restricted to floor-plans with rectangular boundary. In this paper, we introduce floor-plans with $L$-shaped boundary (boundary with only one concave corner). To ensure the L-shaped boundary, we introduce the concept of non-triviality of a floor-plan. A floor-plan with a rectilinear boundary with at least one concave corner is non-trivial if the number of concave corners can not be reduced, without affecting the modules adjacencies within it. Further, we present necessary and sufficient conditions for the existence of a non-trivial L-shaped floor-plan corresponding to a properly triangulated planar graph (PTPG) $G$. Also, we develop an $O(n^2)$ algorithm for its construction, if it exists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源