论文标题

划分适应:减轻黑盒预测域适应域适应的确认偏差

Divide to Adapt: Mitigating Confirmation Bias for Domain Adaptation of Black-Box Predictors

论文作者

Yang, Jianfei, Peng, Xiangyu, Wang, Kai, Zhu, Zheng, Feng, Jiashi, Xie, Lihua, You, Yang

论文摘要

黑盒预测变量(DABP)的域适应性旨在在未标记的目标域上学习一个模型,该目标域由在源域上训练的黑盒预测变量监督。它不需要同时访问源域数据和预测变量参数,从而解决了标准域适应的数据隐私和可移植性问题。现有的DABP方法主要依赖于黑框预测指标\ emph {i.e。}的模型蒸馏,并使用其嘈杂的目标域预测来训练模型,但是不可避免地会引入从预测噪声中积累的确认偏差。为了减轻这种偏见,我们提出了一种名为beta的新方法,将知识蒸馏和嘈杂的标签学习纳入一个连贯的框架。这是通过新的划分到适应策略来实现的。 Beta将目标域分为一个易于适应的子域,噪声较小,难以适应的子域。然后,它部署了相互教学的双胞胎网络,以彼此过滤预测变量,并从易于到硬的子域进行逐步改进。因此,Beta有效地净化了嘈杂的标签并减少了误差积累。从理论上讲,我们表明,通过降低子域的噪声比来最大程度地减少β的目标误差。广泛的实验表明,Beta在所有DABP基准上都胜过现有方法,甚至与使用源域数据的标准域适应方法相媲美。

Domain Adaptation of Black-box Predictors (DABP) aims to learn a model on an unlabeled target domain supervised by a black-box predictor trained on a source domain. It does not require access to both the source-domain data and the predictor parameters, thus addressing the data privacy and portability issues of standard domain adaptation. Existing DABP approaches mostly rely on model distillation from the black-box predictor, \emph{i.e.}, training the model with its noisy target-domain predictions, which however inevitably introduces the confirmation bias accumulated from the prediction noises. To mitigate such bias, we propose a new method, named BETA, to incorporate knowledge distillation and noisy label learning into one coherent framework. This is enabled by a new divide-to-adapt strategy. BETA divides the target domain into an easy-to-adapt subdomain with less noise and a hard-to-adapt subdomain. Then it deploys mutually-teaching twin networks to filter the predictor errors for each other and improve them progressively, from the easy to hard subdomains. As such, BETA effectively purifies the noisy labels and reduces error accumulation. We theoretically show that the target error of BETA is minimized by decreasing the noise ratio of the subdomains. Extensive experiments demonstrate BETA outperforms existing methods on all DABP benchmarks, and is even comparable with the standard domain adaptation methods that use the source-domain data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源