论文标题

将非线性激活引入量子生成模型

Introducing Non-Linear Activations into Quantum Generative Models

论文作者

Gili, Kaitlin, Sveistrys, Mykolas, Ballance, Chris

论文摘要

由于量子力学的线性性,设计量子生成机器学习模型仍然是一个挑战,该模型将非线性激活嵌入了国家向量的演变中。但是,一些最成功的古典生成模型,例如基于神经网络的模型,涉及高质量训练的高度非线性动态。在本文中,我们通过引入一个模型来探讨这些动力学在量子生成建模中的效果,该模型通过神经网络结构将非线性激活添加到标准生产的机器框架上 - 量子神经元出生机器(QNBM)。为了实现这一目标,我们利用了先前引入的量子神经元子例程,这是一个重复启用电路,具有中路测量和经典控制。引入QNBM后,我们通过训练具有4个输出神经元以及各种输入和隐藏层大小的3层QNBM来研究其性能如何取决于网络大小。然后,我们将非线性QNBM与线性量子电路诞生的机器(QCBM)进行比较。我们将相似的时间和内存资源分配给每个模型,因此唯一的主要区别是QNBM要求的量子开销。通过基于梯度的训练,我们表明,尽管这两种模型都可以轻松地学习一个琐碎的概率分布,但在更具挑战性的分布类别上,QNBM的错误率几乎比具有相似数量的可调参数的QCBM要小3倍。因此,我们提供的证据表明非线性是量子生成模型中的有用资源,并且我们将QNBM作为具有良好生成性能和量子优势潜力的新模型。

Due to the linearity of quantum mechanics, it remains a challenge to design quantum generative machine learning models that embed non-linear activations into the evolution of the statevector. However, some of the most successful classical generative models, such as those based on neural networks, involve highly non-linear dynamics for quality training. In this paper, we explore the effect of these dynamics in quantum generative modeling by introducing a model that adds non-linear activations via a neural network structure onto the standard Born Machine framework - the Quantum Neuron Born Machine (QNBM). To achieve this, we utilize a previously introduced Quantum Neuron subroutine, which is a repeat-until-success circuit with mid-circuit measurements and classical control. After introducing the QNBM, we investigate how its performance depends on network size, by training a 3-layer QNBM with 4 output neurons and various input and hidden layer sizes. We then compare our non-linear QNBM to the linear Quantum Circuit Born Machine (QCBM). We allocate similar time and memory resources to each model, such that the only major difference is the qubit overhead required by the QNBM. With gradient-based training, we show that while both models can easily learn a trivial uniform probability distribution, on a more challenging class of distributions, the QNBM achieves an almost 3x smaller error rate than a QCBM with a similar number of tunable parameters. We therefore provide evidence that suggests that non-linearity is a useful resource in quantum generative models, and we put forth the QNBM as a new model with good generative performance and potential for quantum advantage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源