论文标题
部分可观测时空混沌系统的无模型预测
TAR: Neural Logical Reasoning across TBox and ABox
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Many ontologies, i.e., Description Logic (DL) knowledge bases, have been developed to provide rich knowledge about various domains. An ontology consists of an ABox, i.e., assertion axioms between two entities or between a concept and an entity, and a TBox, i.e., terminology axioms between two concepts. Neural logical reasoning (NLR) is a fundamental task to explore such knowledge bases, which aims at answering multi-hop queries with logical operations based on distributed representations of queries and answers. While previous NLR methods can give specific entity-level answers, i.e., ABox answers, they are not able to provide descriptive concept-level answers, i.e., TBox answers, where each concept is a description of a set of entities. In other words, previous NLR methods only reason over the ABox of an ontology while ignoring the TBox. In particular, providing TBox answers enables inferring the explanations of each query with descriptive concepts, which make answers comprehensible to users and are of great usefulness in the field of applied ontology. In this work, we formulate the problem of neural logical reasoning across TBox and ABox (TA-NLR), solving which needs to address challenges in incorporating, representing, and operating on concepts. We propose an original solution named TAR for TA-NLR. Firstly, we incorporate description logic based ontological axioms to provide the source of concepts. Then, we represent concepts and queries as fuzzy sets, i.e., sets whose elements have degrees of membership, to bridge concepts and queries with entities. Moreover, we design operators involving concepts on top of fuzzy set representation of concepts and queries for optimization and inference. Extensive experimental results on two real-world datasets demonstrate the effectiveness of TAR for TA-NLR.