论文标题
vonKármán弹性表面的单数点和奇异曲线
Singular Points and Singular Curves in von Kármán Elastic Surfaces
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Mechanical fields over thin elastic surfaces can develop singularities at isolated points and curves in response to constrained deformations (e.g., crumpling and folding of paper), singular body forces and couples, distributions of isolated defects (e.g., dislocations and disclinations), and singular metric anomaly fields (e.g., growth and thermal strains). With such concerns as our motivation, we model thin elastic surfaces as von K{á}rm{á}n plates and generalize the classical von K{á}rm{á}n equations, which are restricted to smooth fields, to fields which are piecewise smooth, and can possibly concentrate at singular curves, in addition to being singular at isolated points. The inhomogeneous sources to the von K{á}rm{á}n equations, given in terms of plastic strains, defect induced incompatibility, and body forces, are likewise allowed to be singular at isolated points and curves in the domain. The generalized framework is used to discuss the singular nature of deformation and stress arising due to conical deformations, folds, and folds terminating at a singular point.