论文标题

共享以数据为中心材料科学的元数据

Shared Metadata for Data-Centric Materials Science

论文作者

Ghiringhelli, Luca M., Baldauf, Carsten, Bereau, Tristan, Brockhauser, Sandor, Carbogno, Christian, Chamanara, Javad, Cozzini, Stefano, Curtarolo, Stefano, Draxl, Claudia, Dwaraknath, Shyam, Fekete, Ádám, Kermode, James, Koch, Christoph T., Kühbach, Markus, Ladines, Alvin Noe, Lambrix, Patrick, Lenz-Himmer, Maja-Olivia, Levchenko, Sergey, Oliveira, Micael, Michalchuk, Adam, Miller, Ron, Onat, Berk, Pavone, Pasquale, Pizzi, Giovanni, Regler, Benjamin, Rignanese, Gian-Marco, Schaarschmidt, Jörg, Scheidgen, Markus, Schneidewind, Astrid, Sheveleva, Tatyana, Su, Chuanxun, Usvyat, Denis, Valsson, Omar, Wöll, Christof, Scheffler, Matthias

论文摘要

材料科学中数据的广泛生产,它们的广泛共享和重新利用需要受过教育的支持和管理。为了确保这一需求有助于而不是阻碍科学工作,实施公平数据原则(可访问,可访问,可互操作和可重复使用)不得太狭窄。此外,更广泛的材料科学界应该就计算和实验的数据特定挑战的策略达成共识。在本文中,我们介绍了关于“大数据驱动材料科学的共享元数据和数据格式”研讨会上讨论的结果。我们从对元数据的手术定义开始,以及什么特征是合理的元数据模式。我们将主要关注计算材料科学数据,并提出一种建设性的方法,以公平化与地面和兴奋状态计算,潜在能量抽样和广义工作流有关的(META)数据。最后,通过实验(元)数据和材料科学本体的公平化以及如何满足它们的前景,挑战。

The expansive production of data in materials science, their widespread sharing and repurposing requires educated support and stewardship. In order to ensure that this need helps rather than hinders scientific work, the implementation of the FAIR-data principles (Findable, Accessible, Interoperable, and Reusable) must not be too narrow. Besides, the wider materials-science community ought to agree on the strategies to tackle the challenges that are specific to its data, both from computations and experiments. In this paper, we present the result of the discussions held at the workshop on "Shared Metadata and Data Formats for Big-Data Driven Materials Science". We start from an operative definition of metadata, and what features a FAIR-compliant metadata schema should have. We will mainly focus on computational materials-science data and propose a constructive approach for the FAIRification of the (meta)data related to ground-state and excited-states calculations, potential-energy sampling, and generalized workflows. Finally, challenges with the FAIRification of experimental (meta)data and materials-science ontologies are presented together with an outlook of how to meet them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源