论文标题
使用人工神经网络在低速冲击下弹道粘土的混合数值建模
Hybrid Numerical Modeling of Ballistic Clay under Low-Speed Impact using Artificial Neural Networks
论文作者
论文摘要
Roma Plastilina 1号粘土已被广泛用作防弹背心的保守边界条件,即扮演人体的角色。有趣的是,这种边界条件对背心的弹道表现的影响是不明智的。此外,应通过测量变形粘土中的凹痕来表征背部的变形,这对于确定枪声的杀伤力很重要。因此,一些研究的重点是对防弹背心进行建模,还要建模粘土背背。尽管有各种尝试开发合适的数值模型,但确定可以捕获粘土高应变率行为的适当物理参数仍然具有挑战性。在这项研究中,我们使用人工神经网络(ANN)预测了粘土中的压痕深度,并确定了使用逆跟踪方法基于有限元方法(FEM)模型所需的最佳材料参数。我们的Ann-FEM混合模型成功地优化了高晶体速率材料参数,而无需任何独立的机械测试。提出的新型模型实现了高预测准确性超过98%,引用了影响案例。
Roma Plastilina No. 1 clay has been widely used as a conservative boundary condition in bulletproof vests, namely to play the role of a human body. Interestingly, the effect of this boundary condition on the ballistic performance of the vests is indiscernible. Moreover, back face deformation should be characterized by measuring the indentation in the deformed clay, which is important for determining the lethality of gunshots. Therefore, several studies have focused on modeling not only bulletproof vests but also the clay backing material. Despite various attempts to develop a suitable numerical model, determining the appropriate physical parameters that can capture the high-strain-rate behavior of clay is still challenging. In this study, we predicted indentation depth in clay using an artificial neural network (ANN) and determined the optimal material parameters required for a finite element method (FEM)-based model using an inverse tracking method. Our ANN-FEM hybrid model successfully optimized high-strain-rate material parameters without the need for any independent mechanical tests. The proposed novel model achieved a high prediction accuracy of over 98% referring impact cases.