论文标题

De Rham Prismatic Crystals $ \ Mathcal {O} _K $

De Rham prismatic crystals over $\mathcal{O}_K$

论文作者

Liu, Zeyu

论文摘要

我们在$(\ Mathcal {o} _K)_ {\bboldΔ} $上研究De Rham Prismatic晶体。我们表明,de rham晶体由一系列矩阵$ \ {a_ {m,1} \} _ {m \ geq 0} $带有$ a_ {0,1} $“ nilpotent”。使用此情况,我们证明了从$(\ Mathcal {o} _K)_ {\bboldΔ} $上的自然函数到几乎de rham表示的类别是完全忠实的。关键成分是$ g_k $的de rham表示的sen样式变形定理。

We study de Rham prismatic crystals on $(\mathcal{O}_K)_{\bboldΔ}$. We show that a de Rham crystal is controlled by a sequence of matrices $\{A_{m,1}\}_{m \geq 0}$ with $A_{0,1}$ "nilpotent". Using this, we prove that the natural functor from de Rham crystals over $(\mathcal{O}_K)_{\bboldΔ}$ to the category of nearly de Rham representations is fully faithful. The key ingredient is a Sen style decompletion theorem for de Rham representations of $G_K$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源