论文标题
用于学习子图的光谱图
Spectral Maps for Learning on Subgraphs
论文作者
论文摘要
在图形学习中,图形及其子图之间的地图经常出现。例如,当沿管道沿着管道存在更高的操作或重新布线时,需要跟踪原始图和修改图之间的相应节点。从经典上讲,这些地图表示为二进制节点对应矩阵,并使用AS-IS在图之间传输节点的特征。在本文中,我们认为,简单地更改此地图表示可以为图形学习任务带来显着的好处。从几何处理过程中的最新进展中汲取灵感,我们引入了一个易于集成到现有的图形学习模型中的地图的频谱表示。该频谱表示是一个紧凑而直接的插件更换,对于图形的拓扑变化是可靠的。值得注意的是,表示形式表现出使其可解释的结构特性,并与最新的结果相似。我们证明了将光谱图合并到图形学习管道中的好处,解决节点对节点映射的方案没有很好的定义,或者在没有精确的同构的情况下。我们的方法在知识蒸馏和分层学习方面具有实际的好处,我们在计算成本的一小部分中表现出可比或改善的性能。
In graph learning, maps between graphs and their subgraphs frequently arise. For instance, when coarsening or rewiring operations are present along the pipeline, one needs to keep track of the corresponding nodes between the original and modified graphs. Classically, these maps are represented as binary node-to-node correspondence matrices and used as-is to transfer node-wise features between the graphs. In this paper, we argue that simply changing this map representation can bring notable benefits to graph learning tasks. Drawing inspiration from recent progress in geometry processing, we introduce a spectral representation for maps that is easy to integrate into existing graph learning models. This spectral representation is a compact and straightforward plug-in replacement and is robust to topological changes of the graphs. Remarkably, the representation exhibits structural properties that make it interpretable, drawing an analogy with recent results on smooth manifolds. We demonstrate the benefits of incorporating spectral maps in graph learning pipelines, addressing scenarios where a node-to-node map is not well defined, or in the absence of exact isomorphism. Our approach bears practical benefits in knowledge distillation and hierarchical learning, where we show comparable or improved performance at a fraction of the computational cost.