论文标题

浸入颗粒材料的瞬时流变学

Transient Rheology of Immersed Granular Materials

论文作者

Ge, Zhuan, Man, Teng, Huppert, Herbert E., Galindo-Torres, Sergio Anders

论文摘要

在这封信中,我们使用淹没的颗粒色谱柱的两个实验和相应的数值模拟研究了浸入颗粒流的瞬时流变行为。使用与离散元素方法(DEM)结合的晶格 - 玻尔兹曼方法(LBM)进行仿真,并在颗粒状崩溃期间在不同位置和时间下提供大量的应力和变形条件数据。我们得出了一个新的无量纲数字$ \ MATHCAL {G} $,该数字可以在所有仿真数据点中统一不同制度中瞬态颗粒流的流变。 $ \ Mathcal {g} $平稳地从惯性数字转换为粘性数字,统一了流变学法的两个极端。我们还表明需要引入动力学应力以实现普遍关系。这些发现建立了瞬态固有颗粒状流动的瞬态本构框架,对于更好地理解天然和工程情况下的颗粒流体混合物非常重要。

In this letter, we investigate the transient rheological behavior of immersed granular flows using both experiments of submerged granular column collapses and corresponding numerical simulations. The simulations are performed with the lattice-Boltzmann method (LBM) coupled with the discrete element method (DEM) and provide a significant amount of data of the stress and deformation conditions at different positions and times during the granular collapse. We derive a new dimensionless number $\mathcal{G}$ that can unify the rheology of transient granular flows in different regimes for all the simulation data points. $\mathcal{G}$ smoothly transforms from an inertial number into a viscous number, unifying both extremes of the rheology law. We also show the need to introduce the kinetic stresses to achieve a universal relation. The findings establish a transient constitutive framework for visco-inertial granular flows and are important for a better understanding of granular-fluid mixtures in both natural and engineering situations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源