论文标题

伪有效的类别关于投影不可还原性全态形态歧管的类别

Pseudo-effective classes on projective irreducible holomorphic symplectic manifolds

论文作者

Denisi, Francesco Antonio

论文摘要

我们表明,Kovács在K3表面的曲线锥上的结果将推广到任何投影不可还原的全态象征歧管$ x $。特别是,我们表明,如果$ρ(x)\ geq 3 $,则伪有效的锥体$ \ edline {\ mathrm {eff}(x)(x)} $是圆形或等于$ \ operline {\ sum_ {e sum_ {e} {e} $ x $。证据通过双曲线几何形状以及(图像)hodge monodromy group $ \ mathrm {mon}^2 _ {\ mathrm {\ mathrm {hdg}}(x)$ in $ \ text {O}^+(n^1(x))$是有限的。如果$ x $属于已知的变形类之一,则携带优质的Divisor $ e $,而$ρ(x)\ geq 3 $,我们明确地构建了一个附加的积分有效除数,在数值上与$ e $相当,并具有相同的单型orbit,即$ e $。总而言之,我们提供了本文主要结果的一些后果,例如,我们在某些原始的符合性品种上获得了未释放的除数的存在。

We show that Kovács' result on the cone of curves of a K3 surface generalizes to any projective irreducible holomorphic symplectic manifold $X$. In particular, we show that if $ρ(X)\geq 3$, the pseudo-effective cone $\overline{\mathrm{Eff}(X)}$ is either circular or equal to $\overline{\sum_{E}\mathbf{R}^{\geq 0} [E]}$, where the sum runs over the prime exceptional divisors of $X$. The proof goes through hyperbolic geometry and the fact that (the image of) the Hodge monodromy group $\mathrm{Mon}^2_{\mathrm{Hdg}}(X)$ in $\text{O}^+(N^1(X))$ is of finite index. If $X$ belongs to one of the known deformation classes, carries a prime exceptional divisor $E$, and $ρ(X)\geq 3$, we explicitly construct an additional integral effective divisor, not numerically equivalent to $E$, with the same monodromy orbit as that of $E$. To conclude, we provide some consequences of the main result of the paper, for instance, we obtain the existence of uniruled divisors on certain primitive symplectic varieties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源