论文标题
关于$(H_1,H_2)$的Sim宽度和MIM宽度的算法应用程序 - 免费图形
On algorithmic applications of sim-width and mim-width of $(H_1, H_2)$-free graphs
论文作者
论文摘要
MIM Width和Sim-Width是最强大的图形宽度参数之一,SIMP宽度比Mim Width强大,而Mim Width又比Clique-Width强大。虽然几个$ \ mathsf {np} $ - 硬图问题对于限制且可以快速计算的图形类来说是可以处理的,但尚无算法的SIM范围界限算法应用程序。在[Kang等人的[Kang等人,一个可用于弦和共弥态性图的宽度参数,理论计算机科学,704:1-17,2017],询问\ textsc {ipperdent sets}和\ textsc {$ 3 $ -Colouring}是$ \ Mathsf {np {np {np {np {np {np {np {np {np {np {np {np {np {np {np {np)我们观察到,对于\ Mathbb {n} $,\ textsc {list $ k $ -colouring}的每个$ k \ in \ mathbb {n} $中的每个$ k \都是多项式时间的求解,对于sim-width的图形类,其sim-width是有限且可以快速计算的。此外,我们表明,如果对于\ textsc {ipperdent set}而言,则\ textsc {独立$ \ mathcal {h} $ - packing}是可溶解的多项式时间,对于sim-width的图形类是有限且可以快速计算的图形类。此问题是\ textsc {ipperdent set},\ textsc {诱导匹配},\ textsc {ofcociation set}和\ textsc {$ k $ -separator}的常见概括。我们还取得了进步,将$(H_1,H_2)$的MIM宽度分类为$ H_1 $的免费图形是完整的或无效的。我们的结果解决了[Brettell等人的一些开放问题,界定了遗传图类别的中等宽度,图形论期刊,99(1):117-151,2022]。
Mim-width and sim-width are among the most powerful graph width parameters, with sim-width more powerful than mim-width, which is in turn more powerful than clique-width. While several $\mathsf{NP}$-hard graph problems become tractable for graph classes whose mim-width is bounded and quickly computable, no algorithmic applications of boundedness of sim-width are known. In [Kang et al., A width parameter useful for chordal and co-comparability graphs, Theoretical Computer Science, 704:1-17, 2017], it is asked whether \textsc{Independent Set} and \textsc{$3$-Colouring} are $\mathsf{NP}$-complete on graphs of sim-width at most $1$. We observe that, for each $k \in \mathbb{N}$, \textsc{List $k$-Colouring} is polynomial-time solvable for graph classes whose sim-width is bounded and quickly computable. Moreover, we show that if the same holds for \textsc{Independent Set}, then \textsc{Independent $\mathcal{H}$-Packing} is polynomial-time solvable for graph classes whose sim-width is bounded and quickly computable. This problem is a common generalisation of \textsc{Independent Set}, \textsc{Induced Matching}, \textsc{Dissociation Set} and \textsc{$k$-Separator}. We also make progress toward classifying the mim-width of $(H_1,H_2)$-free graphs in the case $H_1$ is complete or edgeless. Our results solve some open problems in [Brettell et al., Bounding the mim-width of hereditary graph classes, Journal of Graph Theory, 99(1):117-151, 2022].