论文标题
通过连续指标识别近乎近似指标的近似定期模式
Recognition of near-duplicate periodic patterns by continuous metrics with approximation guarantees
论文作者
论文摘要
本文严格解决了在欧几里得几何形状中刚性运动下识别周期性模式的具有挑战性的问题。 3维情况对于证明固体晶体材料(周期性晶体)的新颖性和以固体片剂形式的医疗药物的专利很重要。当周期性模式的单元在几乎任何原子的扰动下不连续变化时,过去基于有限子集的描述符失败,这是由于噪声和原子振动而不可避免的。主要的问题不仅是找到完整的不变性(没有假否定的描述符,也没有对所有周期模式的误报),还要为这些不变式的距离指标设计有效的算法,这些算法应在噪声下连续行为。所提出的连续指标在任何欧几里得维度上都解决了这个问题,并且在算法上近似于算法,而在给定模式的大小和复杂性的情况下,算法因子很小。经过证明的Lipschitz连续性使我们能够确认实验和模拟晶体主要数据库中简单不变的所有近乎解倍图。对嘈杂的重复物的这种实际检测将阻止人工产生的“新”材料的轻微扰动。五个期刊正在研究一些此类重复的数据完整性。
This paper rigorously solves the challenging problem of recognizing periodic patterns under rigid motion in Euclidean geometry. The 3-dimensional case is practically important for justifying the novelty of solid crystalline materials (periodic crystals) and for patenting medical drugs in a solid tablet form. Past descriptors based on finite subsets fail when a unit cell of a periodic pattern discontinuously changes under almost any perturbation of atoms, which is inevitable due to noise and atomic vibrations. The major problem is not only to find complete invariants (descriptors with no false negatives and no false positives for all periodic patterns) but to design efficient algorithms for distance metrics on these invariants that should continuously behave under noise. The proposed continuous metrics solve this problem in any Euclidean dimension and are algorithmically approximated with small error factors in times that are explicitly bounded in the size and complexity of a given pattern. The proved Lipschitz continuity allows us to confirm all near-duplicates filtered by simpler invariants in major databases of experimental and simulated crystals. This practical detection of noisy duplicates will stop the artificial generation of `new' materials from slight perturbations of known crystals. Several such duplicates are under investigation by five journals for data integrity.