论文标题
从CFT到具有Bondi-Metzner-Sachs对称性的理论:复杂性和超时订购的相关器
From CFTs to theories with Bondi-Metzner-Sachs symmetries: Complexity and out-of-time-ordered correlators
论文作者
论文摘要
我们使用量子混乱的诊断方法探测了从$ 2D $相对论CFTS到具有Bondi-Metzner-Sachs(BMS)对称性的理论,或者等效的保形Carroll对称性。从对相对论标量场理论的超级限制开始,然后使用状态的振荡器表示在量子级别上进行跟进,可以显示CFT $ _2 $ vacuum以挤压状态的形式平稳地演变为BMS $ _3 $ vacuum。使用协方差矩阵方法计算该变速器的计算电路复杂性显示在目标状态变为边界状态时击中BMS点或等效时显示明显的差异。我们还发现根据信息几何方法计算出的电路复杂性的相似行为。此外,我们讨论了系统的哈密顿演变,并研究了超时的相关器(OTOC)和操作员生长复杂性,这两者都随着BMS点的时间而言,这两者都在多项式上缩放。
We probe the contraction from $2d$ relativistic CFTs to theories with Bondi-Metzner-Sachs (BMS) symmetries, or equivalently Conformal Carroll symmetries, using diagnostics of quantum chaos. Starting from an Ultrarelativistic limit on a relativistic scalar field theory and following through at the quantum level using an oscillator representation of states, one can show the CFT$_2$ vacuum evolves smoothly into a BMS$_3$ vacuum in the form of a squeezed state. Computing circuit complexity of this transmutation using the covariance matrix approach shows clear divergences when the BMS point is hit or equivalently when the target state becomes a boundary state. We also find similar behaviour of the circuit complexity calculated from methods of information geometry. Furthermore, we discuss the hamiltonian evolution of the system and investigate Out-of-time-ordered correlators (OTOCs) and operator growth complexity, both of which turn out to scale polynomially with time at the BMS point.