论文标题
VOGE:使用高斯椭圆形进行分析的可区分渲染器
VoGE: A Differentiable Volume Renderer using Gaussian Ellipsoids for Analysis-by-Synthesis
论文作者
论文摘要
高斯重建内核是由Westover(1990)提出的,并在90年代由计算机图形社区进行了研究,该核心从网格和点云中提供了对象3D几何形状的替代表示。另一方面,当前最新的(SOTA)可区分渲染器,Liu等人。 (2019年),使用栅格化收集每个图像像素上的三角形或点,并根据观看距离将它们混合。在本文中,我们提出了VOGE,该VOGE利用体积高斯重建核作为几何原始核。 VOGE渲染管道使用射线跟踪来捕获最近的原语,并根据沿射线的体积密度分布将它们作为混合物混合。为了通过VOGE有效渲染,我们提出了一个近似的封闭式解决方案,以用于体积密度聚集和粗到细节的渲染策略。最后,我们提供了VOGE的CUDA实施,与Pytorch3d相比,它可以以竞争性的渲染速度进行实时水平渲染。定量和定性实验结果表明,当应用于各种视觉任务时,VOGE的表现优于SOTA对应物,例如对象姿势估计,形状/纹理拟合和遮挡推理。 VOGE库和演示可在以下网址找到:https://github.com/angtian/voge。
The Gaussian reconstruction kernels have been proposed by Westover (1990) and studied by the computer graphics community back in the 90s, which gives an alternative representation of object 3D geometry from meshes and point clouds. On the other hand, current state-of-the-art (SoTA) differentiable renderers, Liu et al. (2019), use rasterization to collect triangles or points on each image pixel and blend them based on the viewing distance. In this paper, we propose VoGE, which utilizes the volumetric Gaussian reconstruction kernels as geometric primitives. The VoGE rendering pipeline uses ray tracing to capture the nearest primitives and blends them as mixtures based on their volume density distributions along the rays. To efficiently render via VoGE, we propose an approximate closeform solution for the volume density aggregation and a coarse-to-fine rendering strategy. Finally, we provide a CUDA implementation of VoGE, which enables real-time level rendering with a competitive rendering speed in comparison to PyTorch3D. Quantitative and qualitative experiment results show VoGE outperforms SoTA counterparts when applied to various vision tasks, e.g., object pose estimation, shape/texture fitting, and occlusion reasoning. The VoGE library and demos are available at: https://github.com/Angtian/VoGE.