论文标题
Polypconnect:图像介绍用于生成具有息肉的逼真的胃肠道图像
PolypConnect: Image inpainting for generating realistic gastrointestinal tract images with polyps
论文作者
论文摘要
在下部胃肠道(GI)中对息肉的早期鉴定会导致预防威胁生命的大肠癌。开发用于检测息肉的计算机辅助诊断系统(CAD)系统可以提高检测准确性和效率,并节省被称为内镜医生的领域专家的时间。构建CAD系统时,缺乏带注释的数据是一个普遍的挑战。生成合成医学数据是一个活跃的研究领域,旨在克服医疗领域中相对较少的积极病例的问题。为了能够有效地训练机器学习(ML)模型,这是CAD系统的核心,应使用大量数据。在这方面,我们提出了Polypconnect管道,该管道可以将非散发图像转换为息肉图像,以增加训练数据集的大小进行训练。我们以涉及内镜医生的定量和定性评估来介绍整个管道。与仅使用真实数据训练的模型相比,使用合成数据训练的息肉分割模型,实际数据显示了平均交叉点(MIOU)的5.1%改善。所有实验的代码都可以在GitHub上获得,以重现结果。
Early identification of a polyp in the lower gastrointestinal (GI) tract can lead to prevention of life-threatening colorectal cancer. Developing computer-aided diagnosis (CAD) systems to detect polyps can improve detection accuracy and efficiency and save the time of the domain experts called endoscopists. Lack of annotated data is a common challenge when building CAD systems. Generating synthetic medical data is an active research area to overcome the problem of having relatively few true positive cases in the medical domain. To be able to efficiently train machine learning (ML) models, which are the core of CAD systems, a considerable amount of data should be used. In this respect, we propose the PolypConnect pipeline, which can convert non-polyp images into polyp images to increase the size of training datasets for training. We present the whole pipeline with quantitative and qualitative evaluations involving endoscopists. The polyp segmentation model trained using synthetic data, and real data shows a 5.1% improvement of mean intersection over union (mIOU), compared to the model trained only using real data. The codes of all the experiments are available on GitHub to reproduce the results.