论文标题

超越您的舒适区域:基于扩散的网络分析知识轨迹建议

Stepping beyond your comfort zone: Diffusion-based network analytics for knowledge trajectory recommendation

论文作者

Zhang, Yi, Wu, Mengjia, Lu, Jie

论文摘要

对追踪科学研究人员的研究兴趣的兴趣正在上升,尤其是预测研究人员的知识轨迹超越其当前的知识轨迹,这是潜在的/跨/多学科互动。因此,在这项研究中,我们提出了一种基于扩散的网络分析方法,用于知识轨迹建议。该方法首先构建由共同主题层和共同授权层组成的异质参考文献网络。然后使用一种新的链接预测方法与扩散策略来反映现实世界中的学术活动,例如合着者之间的知识共享或在类似的研究主题之间扩散。该策略区分了均质和异质节点之间发生的相互作用,并加重了这些相互作用的优势。两组实验 - 一个带有本地数据集,另一组带有全局数据集 - 证明所提出的方法是在选定的基线之前。此外,为了进一步研究我们方法的可靠性,我们进行了一项案例研究,以推荐精选信息科学家及其研究小组的知识轨迹。结果证明了我们的方法在信息科学学科中为个别研究人员,社区和研究机构所产生的经验见解。

Interest in tracing the research interests of scientific researchers is rising, and particularly that of predicting a researcher's knowledge trajectories beyond their current foci into potential inter-/cross-/multi-disciplinary interactions. Hence, in this study, we present a method of diffusion-based network analytics for knowledge trajectory recommendation. The method begins by constructing a heterogeneous bibliometric network consisting of a co-topic layer and a co-authorship layer. A novel link prediction approach with a diffusion strategy is then used to reflect real-world academic activity, such as knowledge sharing between co-authors or diffusing between similar research topics. This strategy differentiates the interactions occurring between homogeneous and heterogeneous nodes and weights the strengths of these interactions. Two sets of experiments - one with a local dataset and another with a global dataset - demonstrate that the proposed method is prior to selected baselines. In addition, to further examine the reliability of our method, we conducted a case study on recommending knowledge trajectories of selected information scientists and their research groups. The results demonstrate the empirical insights our method yields for individual researchers, communities, and research institutions in the information science discipline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源