论文标题

使用跨域潜在调制的变分转移学习

Variational Transfer Learning using Cross-Domain Latent Modulation

论文作者

Hou, Jinyong, Deng, Jeremiah D., Cranefield, Stephen, Din, Xuejie

论文摘要

要成功地将受过训练的神经网络模型应用于新领域,强大的转移学习解决方案至关重要。我们建议将一种新型的跨域潜在调制机制引入各种自动编码器框架,以实现有效的转移学习。我们的关键思想是从一个数据域中采购深度表示,并使用它来影响另一个域的潜在变量的重新聚体化。具体而言,首先由统一的推理模型提取源和目标域的深度表示,并通过使用梯度反转来对齐。然后将所学的深度表示与替代域的潜在编码进行了交叉调节,在该域也应用了一致性约束。在经验验证中,包括许多转移学习基准任务,用于无监督的域适应和图像对图像翻译,我们的模型表明了竞争性能,这也得到了从可视化中获得的证据的支持。

To successfully apply trained neural network models to new domains, powerful transfer learning solutions are essential. We propose to introduce a novel cross-domain latent modulation mechanism to a variational autoencoder framework so as to achieve effective transfer learning. Our key idea is to procure deep representations from one data domain and use it to influence the reparameterization of the latent variable of another domain. Specifically, deep representations of the source and target domains are first extracted by a unified inference model and aligned by employing gradient reversal. The learned deep representations are then cross-modulated to the latent encoding of the alternative domain, where consistency constraints are also applied. In the empirical validation that includes a number of transfer learning benchmark tasks for unsupervised domain adaptation and image-to-image translation, our model demonstrates competitive performance, which is also supported by evidence obtained from visualization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源