论文标题

Symform:使用基于变压器的体系结构的端到端符号回归

SymFormer: End-to-end symbolic regression using transformer-based architecture

论文作者

Vastl, Martin, Kulhánek, Jonáš, Kubalík, Jiří, Derner, Erik, Babuška, Robert

论文摘要

数学公式可以自然描述许多现实世界中的问题。从一组观察到的输入和输出中查找公式的任务称为符号回归。最近,神经网络已应用于符号回归,其中基于变压器的回归似乎是最有前途的回归。在训练大量公式(按几天的顺序)上训练变压器后,实际推断(即找到新的,看不见的数据的公式)非常快(按几秒钟的顺序)。这比最先进的进化方法要快得多。变形金刚的主要缺点是它们生成没有数值常数的公式,必须分别优化,因此产生次优的结果。我们提出了一种基于变压器的方法,称为Symormen,该方法通过同时输出单个符号和相应常数来预测公式。这会导致拟合可用数据的更好性能。此外,Symformer提供的常数是通过梯度下降进行后续调整以进一步提高性能的良好起点。我们在一组基准上显示,在更快的推理的同时,辅助器的表现优于两种最先进的方法。

Many real-world problems can be naturally described by mathematical formulas. The task of finding formulas from a set of observed inputs and outputs is called symbolic regression. Recently, neural networks have been applied to symbolic regression, among which the transformer-based ones seem to be the most promising. After training the transformer on a large number of formulas (in the order of days), the actual inference, i.e., finding a formula for new, unseen data, is very fast (in the order of seconds). This is considerably faster than state-of-the-art evolutionary methods. The main drawback of transformers is that they generate formulas without numerical constants, which have to be optimized separately, so yielding suboptimal results. We propose a transformer-based approach called SymFormer, which predicts the formula by outputting the individual symbols and the corresponding constants simultaneously. This leads to better performance in terms of fitting the available data. In addition, the constants provided by SymFormer serve as a good starting point for subsequent tuning via gradient descent to further improve the performance. We show on a set of benchmarks that SymFormer outperforms two state-of-the-art methods while having faster inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源