论文标题

在分数布朗运动的随机热力学上

On the stochastic thermodynamics of fractional Brownian motion

论文作者

Khadem, S. Mohsen J., Klages, Rainer, Klapp, Sabine H. L.

论文摘要

本文涉及可能表现出异常扩散的非平衡性高斯过程的随机热力学。在考虑的系统中,噪声相关函数不一定与摩擦有关。因此,第二种没有常规的波动散落关系(FDR),也没有定义温度的独特方法。我们从马尔可夫的过程开始,从时间依赖性扩散率(一个示例是布朗尼运动)。事实证明,标准随机热力学概念可以通过引入时间依赖的温度来简单地应用,从而产生积分波动关系。然后,我们进入我们的焦点系统,即经历分数布朗运动(FBM)的粒子。在此系统中,噪声是高斯,但噪声相关函数在时间上是非本地的,可以定义非马尔可夫过程。当使用持续中等温度的随机热力学概念时,我们详细分析了后果。特别是,从耗散到培养基计算的热量与前向运动的路径概率的对数比率不同,如果通过系统熵和热量交换来定义后者,则与总熵产生的标准积分波动关系偏离。可以通过正式定义满足广义FDR的时间非局部温度来规避这些明显的不一致。为了阐明后一种方法引起的相当抽象的数量,我们执行了扰动的扩展。这使我们能够通过分析,直至线性顺序,广义温度和相应的热量交换来计算。通过这种情况,我们为非马克维亚性引起的领先纠正提供了明确的表达和物理解释。

This paper is concerned with the stochastic thermodynamics of non-equilibrium Gaussian processes that can exhibit anomalous diffusion. In the systems considered, the noise correlation function is not necessarily related to friction. Thus, there is no conventional fluctuation-dissipation relation (FDR) of the second kind and no unique way to define a temperature. We start from a Markovian process with time-dependent diffusivity (an example being scaled Brownian motion). It turns out that standard stochastic thermodynamic notions can be applied rather straightforwardly by introducing a time-dependent temperature, yielding the integral fluctuation relation. We then proceed to our focal system, that is, a particle undergoing fractional Brownian motion (FBM). In this system, the noise is Gaussian but the noise correlation function is nonlocal in time, defining a non- Markovian process. We analyse in detail the consequences when using the conventional notions of stochastic thermodynamics with a constant medium temperature. In particular, the heat calculated from dissipation into the medium differs from the log ratio of path probabilities of forward and backward motion, yielding a deviation from the standard integral fluctuation relation for the total entropy production if the latter is defined via system entropy and heat exchange. These apparent inconsistencies can be circumvented by formally defining a time-nonlocal temperature that fulfils a generalized FDR. To shed light on the rather abstract quantities resulting from the latter approach we perform a perturbation expansion. This allows us to calculate analytically, up to linear order, the generalized temperature and the corresponding heat exchange. By this, we provide explicit expressions and a physical interpretation for the leading corrections induced by non-Markovianity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源