论文标题

盲文字母阅读:神经形态硬件的时空模式识别的基准

Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern Recognition on Neuromorphic Hardware

论文作者

Muller-Cleve, Simon F, Fra, Vittorio, Khacef, Lyes, Pequeno-Zurro, Alejandro, Klepatsch, Daniel, Forno, Evelina, Ivanovich, Diego G, Rastogi, Shavika, Urgese, Gianvito, Zenke, Friedemann, Bartolozzi, Chiara

论文摘要

时空模式识别是大脑的基本能力,这是许多现实世界活动所必需的。最近的深度学习方法在此类任务中达到了出色的精确度,但是它们对常规嵌入式解决方案的实施仍然非常计算和能量昂贵。机器人应用中的触觉感测是一个代表性的示例,其中需要实时处理和能源效率。按照脑启发的计算方法,我们通过盲文字母阅读提出了一个新的基准,用于在边缘的时空触觉模式识别。我们根据ICUB机器人指尖的电容触觉传感器录制了一个新的盲文字母数据集。然后,我们研究了空间和时间信息的重要性以及基于事件的编码对基于尖峰的计算的影响。之后,我们使用反向传播(BPTT)和替代梯度训练并比较了馈电和反复的尖峰神经网络(SNN),然后将它们与替代梯度进行了反射,然后我们将它们部署在Intel Loihi神经形态芯片上,以进行快速有效的推断。我们将我们对标准分类器的方法,尤其是在嵌入式NVIDIA JETSON GPU上部署的长短期内存(LSTM),就分类准确性,功率,能量消耗和延迟而言。我们的结果表明,使用基于连续的基于框架的数据而不是基于事件的输入时,LSTM达到了精度的〜97%的精度,将复发性SNN优于17%。但是,具有基于事件的输入的Loihi上的经常性SNN比Jetson上的LSTM高约500倍,总功率仅为约30 mW。这项工作为触觉传感提出了一个新的基准测试,并突出了基于事件的编码,神经形态硬件的挑战和机会,以及基于尖峰的计算,用于时空模式识别。

Spatio-temporal pattern recognition is a fundamental ability of the brain which is required for numerous real-world activities. Recent deep learning approaches have reached outstanding accuracies in such tasks, but their implementation on conventional embedded solutions is still very computationally and energy expensive. Tactile sensing in robotic applications is a representative example where real-time processing and energy efficiency are required. Following a brain-inspired computing approach, we propose a new benchmark for spatio-temporal tactile pattern recognition at the edge through Braille letter reading. We recorded a new Braille letters dataset based on the capacitive tactile sensors of the iCub robot's fingertip. We then investigated the importance of spatial and temporal information as well as the impact of event-based encoding on spike-based computation. Afterward, we trained and compared feedforward and recurrent Spiking Neural Networks (SNNs) offline using Backpropagation Through Time (BPTT) with surrogate gradients, then we deployed them on the Intel Loihi neuromorphic chip for fast and efficient inference. We compared our approach to standard classifiers, in particular to the Long Short-Term Memory (LSTM) deployed on the embedded NVIDIA Jetson GPU, in terms of classification accuracy, power, energy consumption, and delay. Our results show that the LSTM reaches ~97% of accuracy, outperforming the recurrent SNN by ~17% when using continuous frame-based data instead of event-based inputs. However, the recurrent SNN on Loihi with event-based inputs is ~500 times more energy-efficient than the LSTM on Jetson, requiring a total power of only ~30 mW. This work proposes a new benchmark for tactile sensing and highlights the challenges and opportunities of event-based encoding, neuromorphic hardware, and spike-based computing for spatio-temporal pattern recognition at the edge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源