论文标题

壁滑的影响层流经过圆柱体的层流

Effect of wall slip on laminar flow past a circular cylinder

论文作者

Li, Yan-cheng, Peng, Sai, Kouser, Taiba

论文摘要

对经过二维流的数值研究,经过带有滑动壁的密闭圆柱体。一个无尺寸的数字,Knudsen号码($ kn $)用于描述圆柱墙的滑动长度。所考虑的Reynolds编号($ re $)和Knudsen编号($ kn $)范围分别为$ re = [1,180] $和$ kn = [0,\ infty)$。时间平均流量分离角($ \ bar {θ_s} $),无量纲再循环长度($ \ bar {l_s} $)和分布在气缸墙上,拖动系数($ \ bar {$ \ bar {c_d} $)和drag recred($)上的切入速度($ \ bar {u_τ} $)。气缸壁上的时间平均切向速度分布非常符合公式$ \ bar {u_τ} = [\fracα{1+βe^{ - γ(π-θ)}+Δ] sin(θ)$,n efeffients($α$,$β$,$γ$,$γ$,$γ$,$γ$, Several scaling-laws are found, $log(\bar{u_{τmax}})\sim{log(Re)}$ and $\bar{u_{τmax}}\sim{Kn}$ for low $Kn$, ($\bar{u_{τmax}}$ is the maximum tangential velocity on the cylinder's wall), $ log(dr)\ sim {log(re)} $($ re \ leq45 $和$ kn \ leq0.1 $),$ log(dr)\ sim {log {log(kn)} $($ kn \ kn \ leq0.05 $)。在低$ re $,$ dr_v $(减少摩擦阻力)是$ dr $的主要来源。但是,$ dr_p $(减少差压力阻力)在$ re $ $ $ $ $ $ $ $ $> \ sim60 $)和关键数字上的$ kn $贡献最高。 $ dr_v $几乎独立于$ re $。

A numerical study of two-dimensional flow past a confined circular cylinder with slip wall is performed. A dimensionless number, Knudsen number ($Kn$) is used to describe the slip length of cylinder wall. The Reynolds number ($Re$) and Knudsen number ($Kn$) ranges considered are $Re = [1, 180]$ and $Kn = [0, \infty)$, respectively. Time-averaged flow separation angle ($\bar{θ_s}$), dimensionless recirculation length ($\bar{L_s}$) and the tangential velocity ($\bar{u_τ}$) distributed on the cylinder's wall, drag coefficient ($\bar{C_d}$) and drag reduction ($DR$) are investigated. The time-averaged tangential velocity distribution on the cylinder's wall fit well with the formula $\bar{u_τ} = [\fracα{1+βe^{-γ(π-θ)}}+δ]sin(θ) $, where the coefficients ($α$, $β$, $γ$, $δ$) are related with $Re$ and $Kn$. Several scaling-laws are found, $log(\bar{u_{τmax}})\sim{log(Re)}$ and $\bar{u_{τmax}}\sim{Kn}$ for low $Kn$, ($\bar{u_{τmax}}$ is the maximum tangential velocity on the cylinder's wall), $log(DR)\sim{log(Re)}$ ($Re\leq45$ and $Kn\leq0.1$), $log(DR)\sim{log(Kn)}$ ($Kn\leq0.05$). At low $Re$, $DR_v$ (the friction drag reduction) is the main source of $DR$. However, $DR_p$ (the differential pressure drag reduction) contributes the most to $DR$ at high $Re$ ($Re>\sim60$) and $Kn$ over a critical number. $DR_v$ is found almost independent to $Re$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源