论文标题

通过参数鲁棒性集评估数据集偏移的鲁棒性

Evaluating Robustness to Dataset Shift via Parametric Robustness Sets

论文作者

Thams, Nikolaj, Oberst, Michael, Sontag, David

论文摘要

我们提供了一种主动识别分布的小小的变化的方法,从而导致模型性能差异很大。这些偏移是通过观察到的变量的因果机制的参数变化来定义的,其中参数的约束产生了合理分布的“鲁棒性集”,并且在集合上产生了相应的最坏情况损失。虽然可以通过重新加权技术(例如重要性采样)来估算单个参数转移下的损失,但最终的最坏情况优化问题是非convex,估计值可能遭受较大的差异。但是,对于小移位,我们可以构建一个局部二阶近似值,以构建损失下的损失,并提出找到最坏情况下的偏移作为特定的非convex二次优化问题,为此有效算法可用。我们证明,可以直接估计条件指数族模型中的移位,并且绑定了近似误差。我们将方法应用于计算机视觉任务(从图像中对性别进行分类),从而揭示了对非毒物属性变化的敏感性。

We give a method for proactively identifying small, plausible shifts in distribution which lead to large differences in model performance. These shifts are defined via parametric changes in the causal mechanisms of observed variables, where constraints on parameters yield a "robustness set" of plausible distributions and a corresponding worst-case loss over the set. While the loss under an individual parametric shift can be estimated via reweighting techniques such as importance sampling, the resulting worst-case optimization problem is non-convex, and the estimate may suffer from large variance. For small shifts, however, we can construct a local second-order approximation to the loss under shift and cast the problem of finding a worst-case shift as a particular non-convex quadratic optimization problem, for which efficient algorithms are available. We demonstrate that this second-order approximation can be estimated directly for shifts in conditional exponential family models, and we bound the approximation error. We apply our approach to a computer vision task (classifying gender from images), revealing sensitivity to shifts in non-causal attributes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源