论文标题

部分可观测时空混沌系统的无模型预测

CropMix: Sampling a Rich Input Distribution via Multi-Scale Cropping

论文作者

Han, Junlin, Petersson, Lars, Li, Hongdong, Reid, Ian

论文摘要

我们提出了一种简单的方法cropmix,目的是从原始数据集分布中产生丰富的输入分布。与单个随机裁剪不同,它可以无意间仅捕获有限的信息或无关的信息,例如纯背景,无关的对象等,我们使用不同的作物量表多次裁剪图像,从而确保捕获多尺度信息。然后,通过简单地混合多个裁剪的视图来形成新的输入分布,可作为培训数据,可用于许多视觉任务。我们首先证明Cropmix可以无缝地应用于几乎任何培训配方和执行分类任务的神经网络体系结构。证明CropMix可以在整个板上的几个基准任务上提高图像分类器的性能,而无需牺牲计算简单性和效率。此外,我们表明Cropmix对对比度学习和掩盖图像建模有益于更强大的表示形式,在将学习的表示形式转移到下游任务时,可以实现可取的结果。代码可在GitHub上找到。

We present a simple method, CropMix, for the purpose of producing a rich input distribution from the original dataset distribution. Unlike single random cropping, which may inadvertently capture only limited information, or irrelevant information, like pure background, unrelated objects, etc, we crop an image multiple times using distinct crop scales, thereby ensuring that multi-scale information is captured. The new input distribution, serving as training data, useful for a number of vision tasks, is then formed by simply mixing multiple cropped views. We first demonstrate that CropMix can be seamlessly applied to virtually any training recipe and neural network architecture performing classification tasks. CropMix is shown to improve the performance of image classifiers on several benchmark tasks across-the-board without sacrificing computational simplicity and efficiency. Moreover, we show that CropMix is of benefit to both contrastive learning and masked image modeling towards more powerful representations, where preferable results are achieved when learned representations are transferred to downstream tasks. Code is available at GitHub.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源