论文标题
部分可观测时空混沌系统的无模型预测
Non-Gaussianity constraints from Planck spectral distortion cross-correlations
论文作者
论文摘要
原始非高斯性可以提供与宇宙微波背景(CMB)的大规模温度和极化信号相关的$ $ $ distortion各向异性。因此,可以使用$μt$和$μE$相关性的测量来限制它在未直接由标准CMB各向异性直接探测的扰动的波长上。在这项工作中,我们首次严格搜索具有\ planck数据的$μ$ type频谱失真各向异性,应用了经过良好测试的约束ILC组件分离方法与一带一边的框架结合使用。我们从\ planck数据中重建了$μ$的映射,然后我们将其与CMB各向异性相关联,以在biseptrum的本地形式的振幅$ \ fnl $中得出约束,特别是在高度压缩的配置上,有效的wavenumbers $ k_s \ simeq \ simeq \ si} $ si} $ si} {740} {740} $ k_l \ simeq \ si {0.05} {mpc^{ - 1}} $。我们将先前估计的约束提高了不仅仅是一个数量级。这种增强是由于这样一个事实,即我们第一次能够通过在最终分析中仔细控制偏见和系统效应来使用完整的多极信息。我们也首次从$μe$相关性的测量结果中纳入了约束,从而进一步收紧了限制。派生\ planck $μt$和$μe$ power Spectra的组合产生$ | \ fnl | \ Lessim 6800 $(95 \%c.l.)在这个高度挤压的双光谱上。这仅是$ \ simeq 3 $倍比单独的\ litebird的预期约束。我们表明,\ litebird与\ planck的组合将使预期的未来限制通过$ \ simeq 20 \%$,而不是\ litebird。这些限制可用于限制多场通货膨胀模型和原始黑洞形成场景,从而为CMB宇宙学提供了有希望的新颖途径。
Primordial non-Gaussianity can source $μ$-distortion anisotropies that are correlated with the large-scale temperature and polarization signals of the cosmic microwave background (CMB). A measurement of $μT$ and $μE$ correlations can therefore be used to constrain it on wavelengths of perturbations not directly probed by the standard CMB anisotropies. In this work, we carry out a first rigorous search for $μ$-type spectral distortion anisotropies with \Planck data, applying the well-tested constrained ILC component-separation method combined with the needlet framework. We reconstruct a $μ$ map from \Planck data, which we then correlate with the CMB anisotropies to derive constraints on the amplitude $\fNL$ of the local form bispectrum, specifically on the highly squeezed configurations with effective wavenumbers $k_s \simeq \SI{740}{Mpc^{-1}}$ and $k_L \simeq \SI{0.05}{Mpc^{-1}}$. We improve previously estimated constraints by more than an order of magnitude. This enhancement is owing to the fact that for the first time we are able to use the full multipole information by carefully controlling biases and systematic effects in the final analysis. We also for the first time incorporate constraints from measurements of $μE$ correlations, which further tighten the limits. A combination of the derived \Planck $μT$ and $μE$ power spectra yields $|\fNL| \lesssim 6800$ (95\% c.l.) on this highly squeezed bispectrum. This is only $\simeq 3$ times weaker than the anticipated constraint from \LiteBIRD alone. We show that a combination of \LiteBIRD with \Planck will improve the expected future constraint by $\simeq 20\%$ over \LiteBIRD alone. These limits can be used to constrain multi-field inflation models and primordial black hole formation scenarios, thus providing a promising novel avenue forward in CMB cosmology.