论文标题

FHIST:组织学图像的几次分类的基准

FHIST: A Benchmark for Few-shot Classification of Histological Images

论文作者

Shakeri, Fereshteh, Boudiaf, Malik, Mohammadi, Sina, Sheth, Ivaxi, Havaei, Mohammad, Ayed, Ismail Ben, Kahou, Samira Ebrahimi

论文摘要

最近,很少有学习对图像分类引起了广泛的兴趣,但是几乎所有当前的公共基准都集中在自然图像上。由于标记的数据稀缺,因此少数拍摄的范式在医学成像应用中高度相关,因为注释很昂贵,需要专业的专业知识。但是,在医学成像中,很少的学习研究很少,仅限于私人数据集,并且处于早期阶段。特别是,由于癌症相关的组织分类任务的多样性和粒状性以及各种数据预先制定技术的多样性和良好的粒度,因此在组织学上具有很高的兴趣。本文介绍了从各种公共数据集收集的高度多样化的公共基准,以进行几个射击组织学数据分类。我们构建了几乎没有组织类型,不同级别的域移位以及不同癌症部位的不同水平的域移位以及不同的类颗粒状水平,从而反映了现实的情况。我们在基准上评估了最先进的几次学习方法的表现,并观察到简单的微调和正则化方法比流行的元学习和情节训练范式获得了更好的结果。此外,我们根据源和目标组织学数据之间的域移动引入了三种情况:近域,中间域和外域。我们的实验表明,在组织学分类中很少学习的潜力,最先进的射击学习方法接近近域环境中有监督的学习基准。在我们的外域环境中,对于5速5射击,最佳性能方法达到60%的精度。我们认为,我们的工作可以帮助建立现实的评估和对几乎没有学习方法的公平比较,并将进一步鼓励以几种范围的范式进行研究。

Few-shot learning has recently attracted wide interest in image classification, but almost all the current public benchmarks are focused on natural images. The few-shot paradigm is highly relevant in medical-imaging applications due to the scarcity of labeled data, as annotations are expensive and require specialized expertise. However, in medical imaging, few-shot learning research is sparse, limited to private data sets and is at its early stage. In particular, the few-shot setting is of high interest in histology due to the diversity and fine granularity of cancer related tissue classification tasks, and the variety of data-preparation techniques. This paper introduces a highly diversified public benchmark, gathered from various public datasets, for few-shot histology data classification. We build few-shot tasks and base-training data with various tissue types, different levels of domain shifts stemming from various cancer sites, and different class-granularity levels, thereby reflecting realistic scenarios. We evaluate the performances of state-of-the-art few-shot learning methods on our benchmark, and observe that simple fine-tuning and regularization methods achieve better results than the popular meta-learning and episodic-training paradigm. Furthermore, we introduce three scenarios based on the domain shifts between the source and target histology data: near-domain, middle-domain and out-domain. Our experiments display the potential of few-shot learning in histology classification, with state-of-art few shot learning methods approaching the supervised-learning baselines in the near-domain setting. In our out-domain setting, for 5-way 5-shot, the best performing method reaches 60% accuracy. We believe that our work could help in building realistic evaluations and fair comparisons of few-shot learning methods and will further encourage research in the few-shot paradigm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源