论文标题

在生存模型中稀疏时变效果的软阈值操作员

A Soft-Thresholding Operator for Sparse Time-Varying Effects in Survival Models

论文作者

Yang, Yuan, Kang, Jian, Li, Yi

论文摘要

我们考虑一类具有时间依赖性效应的COX模型,在某些未知的时间区域或简短的稀疏时间变化效应中可能为零。该模型对于生物医学研究特别有用,因为它方便地描述了危险因素对生存的影响的逐渐演变。从统计上讲,估计和绘制了对无限尺寸功能参数具有稀疏性(例如,零效应时间间隔的时间变化效应)提出的巨大挑战。为了解决这些问题,我们提出了一个新的软阈值操作员,用于在Cox时变效果模型中对稀疏,分段平滑和连续的时变系数进行建模。与普通的正规化方法不同,我们的方法使人们能够估算非零时变效果并同时检测零区域,并构建一种适合零区域的新型稀疏置信区间。这导致具有直接推理过程的更容易解释的模型。我们开发了一种有效的算法来推断目标功能空间,表明所提出的方法享有所需的理论属性,并通过模拟方式呈现其有限的样本性能。我们采用了提出的方法来分析波士顿肺癌幸存者队列的数据,这是一项流行病学队列研究,研究了危险因素对肺癌存活的影响,并获得临床上有用的结果。

We consider a class of Cox models with time-dependent effects that may be zero over certain unknown time regions or, in short, sparse time-varying effects. The model is particularly useful for biomedical studies as it conveniently depicts the gradual evolution of effects of risk factors on survival. Statistically, estimating and drawing inference on infinite dimensional functional parameters with sparsity (e.g., time-varying effects with zero-effect time intervals) present enormous challenges. To address them, we propose a new soft-thresholding operator for modeling sparse, piecewise smooth and continuous time-varying coefficients in a Cox time-varying effects model. Unlike the common regularized methods, our approach enables one to estimate non-zero time-varying effects and detect zero regions simultaneously, and construct a new type of sparse confidence intervals that accommodate zero regions. This leads to a more interpretable model with a straightforward inference procedure. We develop an efficient algorithm for inference in the target functional space, show that the proposed method enjoys desired theoretical properties, and present its finite sample performance by way of simulations. We apply the proposed method to analyze the data of the Boston Lung Cancer Survivor Cohort, an epidemiological cohort study investigating the impacts of risk factors on lung cancer survival, and obtain clinically useful results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源