论文标题

在brousseau上$ \ sum_ {i = 1}^n i^p f_i $

On the Brousseau sums $\sum_{i=1}^n i^p F_i$

论文作者

Dresden, Gregory

论文摘要

我们从$ f_n -n^p $仅涉及二项式系数的新卷积公式开始。然后,我们使用它们来找到总和$ \ sum_ {i = 1}^n i^p f_ {n-i} $和$ \ sum_ {i = 1}^n i^p f_i $,我们展示了我们的公式如何在Brousseau,brousseau,Zeitlin,aDegoke,aDegoke和aDegoke,shannon和adegoke,annann and annann and annann and annann and annann和shannon和shann的早期论文中连接起来Thiagarajan。

We start with new convolution formulas for $F_n - n^p$ involving only the binomial coefficients. Then, we use those to find direct formulas for the sums $\sum_{i=1}^n i^p F_{n-i}$ and $\sum_{i=1}^n i^p F_i$, and we show how our formulas connect to work in earlier papers by Ledin, Brousseau, Zeitlin, Adegoke, Shannon and Ollerton, and Kinlaw, Morris, and Thiagarajan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源