论文标题
在brousseau上$ \ sum_ {i = 1}^n i^p f_i $
On the Brousseau sums $\sum_{i=1}^n i^p F_i$
论文作者
论文摘要
我们从$ f_n -n^p $仅涉及二项式系数的新卷积公式开始。然后,我们使用它们来找到总和$ \ sum_ {i = 1}^n i^p f_ {n-i} $和$ \ sum_ {i = 1}^n i^p f_i $,我们展示了我们的公式如何在Brousseau,brousseau,Zeitlin,aDegoke,aDegoke和aDegoke,shannon和adegoke,annann and annann and annann and annann and annann和shannon和shann的早期论文中连接起来Thiagarajan。
We start with new convolution formulas for $F_n - n^p$ involving only the binomial coefficients. Then, we use those to find direct formulas for the sums $\sum_{i=1}^n i^p F_{n-i}$ and $\sum_{i=1}^n i^p F_i$, and we show how our formulas connect to work in earlier papers by Ledin, Brousseau, Zeitlin, Adegoke, Shannon and Ollerton, and Kinlaw, Morris, and Thiagarajan.