论文标题

CBS预算(CBSB):一个完整​​而有限的次优搜索多代理路径查找

CBS-Budget (CBSB): A Complete and Bounded Suboptimal Search for Multi-Agent Path Finding

论文作者

Lim, Jaein, Tsiotras, Panagiotis

论文摘要

多代理路径查找(MAPF)是为一个由多个代理团队找到无碰撞路径的问题,同时最大程度地减少了一些全球成本,例如所有代理商所旅行的时间的总和或最后一个代理商所旅行的时间。基于冲突的搜索(CBS)是一项领先的完整和最佳的MAPF求解器,使用可接受的启发式联合计划,懒惰地探索了联合代理状态空间。这样可以接受的启发式联合计划是通过将发现的单个最短路径相结合而没有考虑反对冲突的情况来计算的,并且随着约束被添加到各个代理的路径计划问题以避免发现的冲突时,它逐渐变得更加知情。在本文中,我们试图通过找到一个更明智的启发式联合计划来加速CBS,该计划从上面有限。我们首先提出了预算的班级订购的A*(BCOA*),这是一种新型算法,发现最短的路径具有最小数量的冲突,而这些冲突数量最少。然后,我们通过在CBS的低级搜索中使用BCOA*搜索CBS的CBS的新颖有限成本变体,称为CBS预算(CBSB),并通过在CBS的高级搜索中使用改良的焦点搜索。我们证明CBSB是完整的且有界的。在我们的数值实验中,CBSB找到了几乎一秒钟内数百个代理的最佳解决方案。 CBSB显示了最先进的性能,可与明确的估计CBS(EECB)相当,CBS(EECB)是CBS的最新版本。另一方面,与EECB相比,CBSB更易于实施,因为在增强的CBS(ECB)中,只需在高级搜索中两个优先级队列。

Multi-Agent Path Finding (MAPF) is the problem of finding a collection of collision-free paths for a team of multiple agents while minimizing some global cost, such as the sum of the time travelled by all agents, or the time travelled by the last agent. Conflict Based Search (CBS) is a leading complete and optimal MAPF solver which lazily explores the joint agent state space, using an admissible heuristic joint plan. Such an admissible heuristic joint plan is computed by combining individual shortest paths found without considering inter-agent conflicts, and which becomes gradually more informed as constraints are added to individual agents' path planning problems to avoid discovered conflicts. In this paper, we seek to speedup CBS by finding a more informed heuristic joint plan which is bounded from above. We first propose the budgeted Class-Ordered A* (bCOA*), a novel algorithm that finds the shortest path with minimal number of conflicts that is upper bounded in terms of length. Then, we propose a novel bounded-cost variant of CBS, called CBS-Budget (CBSB) by using a bCOA* search at the low-level search of the CBS and by using a modified focal search at the high-level search of the CBS. We prove that CBSB is complete and bounded-suboptimal. In our numerical experiments, CBSB finds a near optimal solution for hundreds of agents within a fraction of a second. CBSB shows state-of-the-art performance, comparable to Explicit Estimation CBS (EECBS), an enhanced recent version of CBS. On the other hand, CBSB is easier to implement than EECBS, since only two priority queues at the high-level search are needed as in Enhanced CBS (ECBS).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源