论文标题
结构代数量子场理论
Structural Algebraic Quantum Field Theory
论文作者
论文摘要
常规量子场理论是一种研究无结构基本颗粒的方法。另一方面,非质量颗粒是由内部结构或颗粒组成的颗粒,这些颗粒由含有夸克和胶子的基本成分组成。我们介绍了量子场理论的结构 - 包含结构的代数公式,该理论可以处理这种颗粒,并且正交多项式起着核心作用。为简单起见,我们考虑了3+1 Minkowski时空中的非质量标量颗粒,在三个附录中,我们使用结构,无质量的矢量场和巨大的矢量玻色子处理纺纱器。我们展示了如何在非线性标量旋转耦合模型中进行散射计算,其中我们发现Feynman图中的循环积分非常有限。这个简短的展览的目的是使用这种方法来激励进一步的研究和研究。
Conventional quantum field theory is a method for studying structureless elementary particles. Non-elementary particles, on the other hand, are those with internal structure or particles that are made up of elementary constituents like the hadrons, which contain quarks and gluons. We introduce a structure-inclusive algebraic formulation of quantum field theory that could handle such particles and in which orthogonal polynomials play a central role. For simplicity, we consider non-elementary scalar particles in 3+1 Minkowski space-time and, in three appendices, we treat spinors with structure, massless vector fields, and the massive vector bosons. We show how to do scattering calculation in a nonlinear scalar-spinor coupling model where we find that loop integrals in the Feynman diagrams are remarkably finite. The aim of this short exposé is to motivate further studies and research using this approach.