论文标题

部分可观测时空混沌系统的无模型预测

Structured Neural-PI Control for Networked Systems: Stability and Steady-State Optimality Guarantees

论文作者

Cui, Wenqi, Jiang, Yan, Zhang, Baosen, Shi, Yuanyuan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study the control of networked systems with the goal of optimizing both transient and steady-state performances while providing stability guarantees. Linear proportional-integral (PI) controllers are almost always used in practice, but the linear parameterization of the controller fundamentally limits its performance. Learning-based approaches are becoming popular in designing nonlinear controllers, but the lack of stability guarantees makes the learned controllers difficult to apply in practical applications. This paper bridges the gap between neural network-based controller design and the need for stability guarantees. Using equilibrium-independent passivity, a property present in a wide range of physical systems, we propose structured neural-PI controllers that have provable guarantees on the convergence of output to a desired agreement value. If communication between neighbours is available, we further extend the controller to distributedly achieve optimal resource allocation at the steady state. We explicitly characterize the stability conditions and engineer neural networks that satisfy them by design. Experiments on traffic and power networks demonstrate that the proposed approach can improve transient and steady-state performances compared to existing state-of-the-art, while unstructured neural networks lead to unstable behaviors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源