论文标题
maskocr:带有蒙版编码器预审查的文本识别
MaskOCR: Text Recognition with Masked Encoder-Decoder Pretraining
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Text images contain both visual and linguistic information. However, existing pre-training techniques for text recognition mainly focus on either visual representation learning or linguistic knowledge learning. In this paper, we propose a novel approach MaskOCR to unify vision and language pre-training in the classical encoder-decoder recognition framework. We adopt the masked image modeling approach to pre-train the feature encoder using a large set of unlabeled real text images, which allows us to learn strong visual representations. In contrast to introducing linguistic knowledge with an additional language model, we directly pre-train the sequence decoder. Specifically, we transform text data into synthesized text images to unify the data modalities of vision and language, and enhance the language modeling capability of the sequence decoder using a proposed masked image-language modeling scheme. Significantly, the encoder is frozen during the pre-training phase of the sequence decoder. Experimental results demonstrate that our proposed method achieves superior performance on benchmark datasets, including Chinese and English text images.