论文标题
量子状态扩散法的量子速度限制
Quantum speed limit from a quantum-state-diffusion method
论文作者
论文摘要
量子速度极限(QSL)表征最有效的演变在量子技术中起着重要作用。如何从封闭的系统到开放系统概括良好的QSL引起了很多关注。与以前的方案相反,从开放系统的减少动力学中得出QSL,我们提出了一个QSL,它是使用量子 - 状态扩散方法从由开放系统及其环境组成的总系统的角度绑定的。我们的计划在两级系统中的应用表明,该系统在无噪声案件中具有无限的加速能力,该案例在伯恩·马尔科夫(Born-Markovian)近似下被环境破坏了。有趣的是,只要在总系统的能量谱中形成界面状态,无噪声情况中的容量就会在非马克维亚动力学中恢复。我们的结果丰富了QSL的特征方案,为控制开放系统的QSL提供了一种有效的方法。
Characterizing the most efficient evolution, the quantum speed limit (QSL) plays a significant role in quantum technology. How to generalize the well-established QSL from closed systems to open systems has attracted much attention. In contrast to the previous schemes to derive the QSL from the reduced dynamics of open system, we propose a QSL bound from the point of view of the total system consisting of the open system and its environment using a quantum-state-diffusion method. The application of our scheme to a two-level system reveals that the system possesses an infinite speedup capacity in the noiseless case, which is destroyed by the environment under the Born-Markovian approximation. It is interesting to find that the capacity in the noiseless case is recovered in the non-Markovian dynamics as long as a bound state is formed in the energy spectrum of the total system. Enriching the characterization schemes of the QSL, our result provides an efficient way to control the QSL of open systems.