论文标题
由林格利孔代数产生的量子圆环中的某些身份
Some Identities in Quantum Torus Arising from Ringel-Hall Algebras
论文作者
论文摘要
我们在任意字段中定义了两类震颤的表示形式,称为单态表示和表达表示。我们表明,每个表示都有独特的最大nilpotent子代表性,而相关的商始终是单态的,并且每个表示形式都具有独特的最大表达亚代表性,而相关的商始终是nilpotent。这种亚竞争的独特性暗示着林格尔霍尔代数中的两个身份。通过应用Reineke的集成图,我们在相应的量子圆环中获得了两个身份。
We define two classes of representations of quivers over arbitrary fields, called monomorphic representations and epimorphic representations. We show that every representation has a unique maximal nilpotent subrepresentation and the associated quotient is always monomorphic, and every representation has a unique maximal epimorphic subrepresentation and the associated quotient is always nilpotent. The uniquenesses of such subrepresenations imply two identities in the Ringel-Hall algebra. By applying Reineke's integration map, we obtain two identities in the corresponding quantum torus.