论文标题

不可压缩的碳音-TU方程的分析和计算研究

An analytical and computational study of the incompressible Toner-Tu Equations

论文作者

Gibbon, John. D., Kiran, Kolluru Venkata, Padhan, Nadia Bihari, Pandit, Rahul

论文摘要

不可压缩的碳粉TU(ITT)部分微分方程(PDE)是一组活跃流体PDE的一个重要示例。尽管它们与Navier-Stokes方程(NSE)共享某些属性,例如相同的缩放不变性,但也存在重要差异。 NSE通常在衰减或添加性强制案例中考虑,而ITT方程没有添加剂强迫。取而代之的是,它们包括一个线性的活动$α\ bu $($ \ bu $是速度字段),该线将能量泵入系统,但也是负$ \ bu | \ bu | \ | \ | \ |^{2} $ - 该术语为冻结或统计上稳态的状态提供了一个平台。综上所述,这些差异使ITT方程成为了使用PDE分析和伪透光直接数值模拟(DNSS)的组合进行研究的有趣候选者。在$ d = 2 $的情况下,我们已经建立了全球解决方案的规律性,但是我们还展示了存在加权,较高衍生品和速度场较高矩的加权,时间平均规范的有限层次结构。在$ d = 3 $的情况下,还建立了类似的Leray型弱解决方案的界限层次结构。我们在$ d = 2 $和$ d = 3 $中从DNSS中介绍了这些规范的结果,并将其与他们的Navier-Stokes对应物进行了对比。

The incompressible Toner-Tu (ITT) partial differential equations (PDEs) are an important example of a set of active-fluid PDEs. While they share certain properties with the Navier-Stokes equations (NSEs), such as the same scaling invariance, there are also important differences. The NSEs are usually considered in either the decaying or the additively forced cases, whereas the ITT equations have no additive forcing. Instead, they include a linear, activity term $α\bu$ ($\bu$ is the velocity field) which pumps energy into the system, but also a negative $\bu|\bu|^{2}$-term which provides a platform for either frozen or statistically steady states. Taken together, these differences make the ITT equations an intriguing candidate for study using a combination of PDE analysis and pseudo-spectral direct numerical simulations (DNSs). In the $d=2$ case, we have established global regularity of solutions, but we have also shown the existence of bounded hierarchies of weighted, time-averaged norms of both higher derivatives and higher moments of the velocity field. Similar bounded hierarchies for Leray-type weak solutions have also been established in the $d=3$ case. We present results for these norms from our DNSs in both $d=2$ and $d=3$, and contrast them with their Navier-Stokes counterparts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源