论文标题

Landslide4Sense:参考基准数据和深度学习模型的滑坡检测模型

Landslide4Sense: Reference Benchmark Data and Deep Learning Models for Landslide Detection

论文作者

Ghorbanzadeh, Omid, Xu, Yonghao, Ghamisi, Pedram, Kopp, Michael, Kreil, David

论文摘要

这项研究介绍了\ textit {landslide4sense},这是一种从遥感中检测到滑坡检测的参考基准。该存储库具有3,799个图像贴片,可从Sentinel-2传感器中融合光学层,并带有数字高程模型和来自ALOS Palsar的斜率层。附加的地形信息促进了对滑坡边界的准确检测,而最近的研究表明,仅使用光学数据就在挑战。广泛的数据集支持在滑坡检测中进行深度学习(DL)研究,以及对滑坡库存系统更新的方法的开发和验证。基准数据集已在四个不同的时间和地理位置收集:伊伯里(2018年9月),科达古(2018年8月),戈尔卡(2015年4月)和台湾(2009年8月)。每个图像像素都被标记为属于滑坡是否不属于滑坡,并包含各种来源和详尽的手动注释。然后,我们评估11个最先进的DL分割模型的滑坡检测性能:U-NET,RESU-NET,PSPNET,CONTECTNET,DEEPLAB-V2,DEEPLAB-V3+,FCN-8,LINKNET,LINKNET,FRRRN-A,FRRRN-A,FRRRN-B和SQNET。所有型号均已从划痕培训了每个研究区域四分之一的贴片,并在其他三个季度的独立贴片上进行了测试。我们的实验表明,Resu-NET的表现优于其他模型,用于滑坡检测任务。我们在\ url {https://www.iarai.ac.at/landslide4sense}上公开获得了多源滑坡基准数据(Landslide4sense),并在公开上获得了经过测试的DL模型,建立了一个重要的资源,用于远程感应,计算机视觉社区,以及用于图像分类和应用程序的一般研究,以范围的研究和机器学习社区的一般研究。

This study introduces \textit{Landslide4Sense}, a reference benchmark for landslide detection from remote sensing. The repository features 3,799 image patches fusing optical layers from Sentinel-2 sensors with the digital elevation model and slope layer derived from ALOS PALSAR. The added topographical information facilitates the accurate detection of landslide borders, which recent researches have shown to be challenging using optical data alone. The extensive data set supports deep learning (DL) studies in landslide detection and the development and validation of methods for the systematic update of landslide inventories. The benchmark data set has been collected at four different times and geographical locations: Iburi (September 2018), Kodagu (August 2018), Gorkha (April 2015), and Taiwan (August 2009). Each image pixel is labelled as belonging to a landslide or not, incorporating various sources and thorough manual annotation. We then evaluate the landslide detection performance of 11 state-of-the-art DL segmentation models: U-Net, ResU-Net, PSPNet, ContextNet, DeepLab-v2, DeepLab-v3+, FCN-8s, LinkNet, FRRN-A, FRRN-B, and SQNet. All models were trained from scratch on patches from one quarter of each study area and tested on independent patches from the other three quarters. Our experiments demonstrate that ResU-Net outperformed the other models for the landslide detection task. We make the multi-source landslide benchmark data (Landslide4Sense) and the tested DL models publicly available at \url{https://www.iarai.ac.at/landslide4sense}, establishing an important resource for remote sensing, computer vision, and machine learning communities in studies of image classification in general and applications to landslide detection in particular.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源