论文标题
RMT-NET:拒绝意识到的多任务网络,用于建模财务信用评分中缺少非拨号数据
RMT-Net: Reject-aware Multi-Task Network for Modeling Missing-not-at-random Data in Financial Credit Scoring
论文作者
论文摘要
在财务信用评分中,贷款申请可以被批准或拒绝。我们只能观察到批准的样本的默认/非默认标签,但没有观察到拒绝样本,这会导致缺失 - 非AT-AT-random选择偏差。经过此类偏见数据培训的机器学习模型不可避免地不可靠。在这项工作中,根据现实世界数据研究和理论分析,我们发现默认/非默认分类任务和拒绝/批准分类任务高度关联。因此,默认/非默认的学习可以受益于拒绝/批准。因此,我们首次提议使用多任务学习(MTL)对有偏见的信用评分数据进行建模。具体来说,我们提出了一个新颖的拒绝多任务网络(RMT-NET),该网络学习了从拒绝/批准任务来控制信息共享的任务权重到基于拒绝概率的门控网络,从拒绝/批准任务到默认/非默认任务。 rmt-net利用拒绝概率越大的两个任务之间的关系,默认/非默认任务就越需要从拒绝/批准任务中学习。此外,我们将RMT-NET扩展到RMT-NET ++,用于建模方案,并具有多种拒绝/批准策略。在几个数据集上进行了广泛的实验,并强烈验证了RMT-NET对批准和拒绝样品的有效性。此外,RMT-NET ++进一步改善了RMT-NET的性能。
In financial credit scoring, loan applications may be approved or rejected. We can only observe default/non-default labels for approved samples but have no observations for rejected samples, which leads to missing-not-at-random selection bias. Machine learning models trained on such biased data are inevitably unreliable. In this work, we find that the default/non-default classification task and the rejection/approval classification task are highly correlated, according to both real-world data study and theoretical analysis. Consequently, the learning of default/non-default can benefit from rejection/approval. Accordingly, we for the first time propose to model the biased credit scoring data with Multi-Task Learning (MTL). Specifically, we propose a novel Reject-aware Multi-Task Network (RMT-Net), which learns the task weights that control the information sharing from the rejection/approval task to the default/non-default task by a gating network based on rejection probabilities. RMT-Net leverages the relation between the two tasks that the larger the rejection probability, the more the default/non-default task needs to learn from the rejection/approval task. Furthermore, we extend RMT-Net to RMT-Net++ for modeling scenarios with multiple rejection/approval strategies. Extensive experiments are conducted on several datasets, and strongly verifies the effectiveness of RMT-Net on both approved and rejected samples. In addition, RMT-Net++ further improves RMT-Net's performances.