论文标题

锗中的坚硬超导差距

Hard superconducting gap in germanium

论文作者

Tosato, Alberto, Levajac, Vukan, Wang, Ji-Yin, Boor, Casper J., Borsoi, Francesco, Botifoll, Marc, Borja, Carla N., Martí-Sánchez, Sara, Arbiol, Jordi, Sammak, Amir, Veldhorst, Menno, Scappucci, Giordano

论文摘要

自旋,超导和拓扑系统的协整成为了可扩展和高保真量子信息技术的令人兴奋的途径。高弹性平面锗是用于构建具有自旋量子的量子处理器的前跑者半导体,但是由于获得没有亚gap状态(硬间隙)的超导体间隙的杂交超导型 - 轴向导体设备的进展受到阻碍。在这里,我们通过在高弹性平面锗和日耳甲硅剂母体超导体之间开发低蛋白,无氧化物界面来解决这一挑战。这种超导接触是由金属(PT)和半导体异质结构(GE/SIGE)之间的热激活的固相反应形成的。电特性揭示了约瑟夫森连接处的几乎不合同性,而且重要的是,量子点接触中的硬诱导超导间隙。此外,我们证明了约瑟夫森连接的相位控制和在门控二维超导体 - 触发器阵列中朝向可扩展体系结构的相对传输。这些结果扩大了锗中的量子技术工具箱,并为探索单层超导体 - 触发器量子电路提供了新的途径,以朝着可伸缩的量子信息处理。

The co-integration of spin, superconducting, and topological systems is emerging as an exciting pathway for scalable and high-fidelity quantum information technology. High-mobility planar germanium is a front-runner semiconductor for building quantum processors with spin-qubits, but progress with hybrid superconductor-semiconductor devices is hindered because obtaining a superconducting gap free of subgap states (hard gap) has proven difficult. Here we solve this challenge by developing a low-disorder, oxide-free interface between high-mobility planar germanium and a germanosilicide parent superconductor. This superconducting contact is formed by the thermally-activated solid phase reaction between a metal (Pt) and the semiconductor heterostructure (Ge/SiGe). Electrical characterization reveals near-unity transparency in Josephson junctions and, importantly, a hard induced superconducting gap in quantum point contacts. Furthermore, we demonstrate phase control of a Josephson junction and study transport in a gated two-dimensional superconductor-semiconductor array towards scalable architectures. These results expand the quantum technology toolbox in germanium and provide new avenues for exploring monolithic superconductor-semiconductor quantum circuits towards scalable quantum information processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源