论文标题
OG6奇异类型的原始符号符合性品种的合理曲线
Rational curves on primitive symplectic varieties of OG6 singular type
论文作者
论文摘要
我们证明,在原始的符号变化上,任何足够的类都是O'Grady的单数6维示例的局部微不足道的变形,与未释放的Divisor的Chern类成正比。该结果回答了Lehn,Mongardi和Pacienza的一个问题,从而扩大了这种变形类型的原始符号性品种的结果。
We prove that any ample class on a primitive symplectic variety that is locally trivial deformation of O'Grady's singular 6 dimensional example is proportional to the first Chern class of a uniruled divisor. This result answers a question of Lehn, Mongardi and Pacienza, extending their result for primitive symplectic varieties of this deformation type.