论文标题

扩散蒙特卡洛计算的误差取消表面化学计算

Error Cancellation in Diffusion Monte Carlo Calculations of Surface Chemistry

论文作者

Iyer, Gopal R., Rubenstein, Brenda M.

论文摘要

扩散的蒙特卡洛(DMC)被认为是一种更高的临界性,尽管计算更昂贵,替代密度功能理论(DFT),用于催化系统的能量预测。使用DMC进行催化的主要计算瓶颈是需要通过模拟越来越大的周期细胞(超级细胞)来消除多体有限尺寸效应并在热力学极限中获得能量,从而进行有限尺寸的外推。在这里,我们表明,通过利用多体有限尺寸误差的取消,可以显着降低这种计算成本,这些误差在计算诸如结合能量和映射势能表面之类的数量时伴随能量差异的评估。我们测试了两个众所周知的吸附/平板系统H2O/LIH(001)和CO/PT(111)中的误差取消和收敛。基于此,我们确定在热力学极限中获得结合能的策略,以优化取消误差以平衡准确性和计算效率。然后,我们预测CO/PT上的吸附位点偏好的正确顺序(111),这是DFT的挑战性问题。与实验观察一致,我们准确,廉价的DMC计算恢复了顶部>桥>中空站点顺序。我们继续绘制PT(111)吸附位点之间的CO跳的势能表面。这揭示了存在L形顶桥空心扩散轨迹的存在,该轨迹的特征是能屏障为CO/PT(111)吸附的实验观察提供了额外的动力学理由。总体而言,这项工作表明,通常可以利用取消误差在计算能量差异中,在异质催化和表面化学中无处不在的能量差异,通常可以通过利用误差取消来实现DMC计算中的记忆加速和存储器节省。

Diffusion Monte Carlo (DMC) is being recognized as a higher-accuracy, albeit more computationally expensive, alternative to Density Functional Theory (DFT) for energy predictions of catalytic systems. A major computational bottleneck in the use of DMC for catalysis is the need to perform finite-size extrapolations by simulating increasingly large periodic cells (supercells) to eliminate many-body finite-size effects and obtain energies in the thermodynamic limit. Here, we show that this computational cost can be significantly reduced by leveraging the cancellation of many-body finite-size errors that accompanies the evaluation of energy differences when calculating quantities like binding energies and mapping potential energy surfaces. We test the error cancellation and convergence in two well-known adsorbate/slab systems, H2O/LiH(001) and CO/Pt(111). Based on this, we identify strategies for obtaining binding energies in the thermodynamic limit that optimize error cancellation to balance accuracy and computational efficiency. We then predict the correct order of adsorption site preference on CO/Pt(111), a challenging problem for DFT. Our accurate, inexpensive DMC calculations recover the top > bridge > hollow site order, in agreement with experimental observations. We proceed to map the potential energy surface of CO hopping between Pt(111) adsorption sites. This reveals the existence of an L-shaped top-bridge-hollow diffusion trajectory characterized by energy barriers that provide an additional kinetic justification for experimental observations of CO/Pt(111) adsorption. Overall, this work demonstrates that it is routinely possible to achieve order-of-magnitude speedups and memory savings in DMC calculations by taking advantage of error cancellation in the calculation of energy differences that are ubiquitous in heterogeneous catalysis and surface chemistry more broadly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源