论文标题

Ultracold $^{88} $ sr的光电离子交叉部分$^1 $ p $ _1 $和$^3 $ s $ _1 $ _1 $状态在390 nm和由此产生的蓝色魔法波长光学晶格时钟约束

Photoionization cross sections of ultracold $^{88}$Sr in $^1$P$_1$ and $^3$S$_1$ states at 390 nm and the resulting blue-detuned magic wavelength optical lattice clock constraints

论文作者

Witkowski, Marcin, Bilicki, Sławomir, Bober, Marcin, Kovačić, Domagoj, Singh, Vijay, Tonoyan, Ara, Zawada, Michał

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present the measurements of the photoionisation cross sections of the excited $^1$P$_1$ and $^3$S$_1$ states of ultracold $^{88}$Sr atoms at 389.889 nm wavelength, which is the magic wavelength of the $^{1}$S$_{0}$-${}^{3}$P${}_{0}$ clock transition. The photoionisation cross section of the $^1$P$_1$ state is determined from the measured ionisation rates of $^{88}$Sr in the magneto-optical trap in the $^1$P$_1$ state to be 2.20(50)$\times$10$^{-20}$ m$^2$, while the photoionisation cross section of $^{88}$Sr in the $^3$S$_1$ state is inferred from the photoionisation-induced reduction in the number of atoms transferred through the $^3\text{S}_1$ state in an operating optical lattice clock to be $1.38(66)\times$10$^{-18}$ m$^2$. Furthermore, the resulting limitations of employing a blue-detuned magic wavelength optical lattice in strontium optical lattice clocks are evaluated. We estimated photoionisation induced loss rates of atoms at 389.889 nm wavelength under typical experimental conditions and made several suggestions on how to mitigate these losses. In particular, the large photoionisation induced losses for the $^3$S$_1$ state would make the use of the $^3$S$_1$ state in the optical cycle in a blue-detuned optical lattice unfeasible and would instead require the less commonly used $^3$D$_{1,2}$ states during the detection part of the optical clock cycle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源