论文标题

关系特征的组成以及用于解释黑盒预测变量的应用

Composition of Relational Features with an Application to Explaining Black-Box Predictors

论文作者

Srinivasan, Ashwin, Baskar, A, Dash, Tirtharaj, Shah, Devanshu

论文摘要

关系机器学习计划诸如归纳逻辑编程(ILP)中开发的程序提供了几个优点:(1)对数据实例之间的复杂关系建模的能力; (2)模型构建过程中域特异性关系的使用; (3)构建的模型是可读的,通常比人类理解更近一步。但是,这些类似ILP的方法无法充分利用快速的硬件,软件和算法开发,从而助长了深神经网络中当前的发展。在本文中,我们将关系特征视为函数,并使用函数的广义组成的概念来从较简单的函数中得出复杂的函数。我们制定了一组$ \ text {m} $的概念 - 模式语言中的简单功能$ \ text {m} $,并识别两个构图运算符($ρ_1$和$ρ_2$),可以从中得出所有可能的复杂功能。我们使用这些结果来实现一种“可解释的神经网络”的形式,称为组成关系机或CRM,该形式标记为定向隔离图。 CRM中任何顶点$ j $的顶点标签包含功能功能函数$ f_j $和连续的激活函数$ g_j $。如果$ j $是一个“非输入”顶点,则$ f_j $是$ j $直接前辈中与顶点相关的功能的组成。我们的重点是CRMS,其中输入顶点(没有任何直接前辈)都具有$ \ text {m} $ - 其顶点标签中的简单功能。我们提供了一个随机构建和学习此类CRM的程序。使用基于CRM特征的组成结构的解释概念,我们就识别适当解释的能力的合成数据提供了经验证据;并证明将CRMs用作“解释机”对黑框模型的使用,这些模型无法提供预测的解释。

Relational machine learning programs like those developed in Inductive Logic Programming (ILP) offer several advantages: (1) The ability to model complex relationships amongst data instances; (2) The use of domain-specific relations during model construction; and (3) The models constructed are human-readable, which is often one step closer to being human-understandable. However, these ILP-like methods have not been able to capitalise fully on the rapid hardware, software and algorithmic developments fuelling current developments in deep neural networks. In this paper, we treat relational features as functions and use the notion of generalised composition of functions to derive complex functions from simpler ones. We formulate the notion of a set of $\text{M}$-simple features in a mode language $\text{M}$ and identify two composition operators ($ρ_1$ and $ρ_2$) from which all possible complex features can be derived. We use these results to implement a form of "explainable neural network" called Compositional Relational Machines, or CRMs, which are labelled directed-acyclic graphs. The vertex-label for any vertex $j$ in the CRM contains a feature-function $f_j$ and a continuous activation function $g_j$. If $j$ is a "non-input" vertex, then $f_j$ is the composition of features associated with vertices in the direct predecessors of $j$. Our focus is on CRMs in which input vertices (those without any direct predecessors) all have $\text{M}$-simple features in their vertex-labels. We provide a randomised procedure for constructing and learning such CRMs. Using a notion of explanations based on the compositional structure of features in a CRM, we provide empirical evidence on synthetic data of the ability to identify appropriate explanations; and demonstrate the use of CRMs as 'explanation machines' for black-box models that do not provide explanations for their predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源