论文标题
海森伯格集团的标量有价值的傅立叶变换
A scalar valued Fourier transform for the Heisenberg group
论文作者
论文摘要
我们为在海森堡组上的功能定义了一个有价值的傅立叶变换,并建立了其一些基本属性,例如反转公式,plancherel定理和riemann-lebesgue引理。我们还根据新的变换来重申某些众所周知的傅立叶变换定理,我们想称之为strichartz傅立叶变换。
We define a scalar valued Fourier transform for functions on the Heisenberg group and establish some of its basic properties like inversion formula, Plancherel theorem and Riemann-Lebesgue lemma. We also restate certain well known theorems for the group Fourier transform in terms of the new transform which we would like to call Strichartz Fourier transform.