论文标题
具有尺寸6运算符的Abelian Higgs-Kibble模型的可重新分解扩展
Renormalizable Extension of the Abelian Higgs-Kibble Model with a dimension 6 operator
论文作者
论文摘要
研究了由尺寸6导数操作员诱导的Abelian Higgs露骨模型的变形。建立了一个新颖的微分方程,以固定顶点的依赖性在dim.6运算符的耦合$ z $上,幅度在$ z = 0 $(可供电的可重量化的higgs-kibble模型的振幅)。后一个方程在形式主义中保持,其中物理模式由量规不变的字段描述。研究了这种形式主义中该理论的功能身份。特别是我们表明,斯拉夫诺夫 - 泰勒的身份在规范不变标量的内部传播器数量中分别在每个顺序上保持真实。尽管可重量化的非功率计数可容纳,但$ z \ neq 0 $的模型取决于有限数量的物理参数。
A deformation of the Abelian Higgs Kibble model induced by a dimension 6 derivative operator is studied. A novel differential equation is established fixing the dependence of the vertex functional on the coupling $z$ of the dim.6 operator in terms of amplitudes at $z = 0$ (those of the power-counting renormalizable Higgs-Kibble model). The latter equation holds in a formalism where the physical mode is described by a gauge-invariant field. The functional identities of the theory in this formalism are studied. In particular we show that the Slavnov-Taylor identities separately hold true at each order in the number of internal propagators of the gauge-invariant scalar. Despite being non-power-counting renormalizable, the model at $z \neq 0$ depends on a finite number of physical parameters.