论文标题

数据驱动的慢性病动态治疗计划

Data-driven dynamic treatment planning for chronic diseases

论文作者

Naumzik, Christof, Feuerriegel, Stefan, Nielsen, Anne Molgaard

论文摘要

为了提供有效的护理,健康管理必须考虑慢性疾病的独特轨迹。这些疾病反复发生急性,不稳定和稳定的阶段,每种疾病都需要不同的治疗方案。但是,正确识别轨迹阶段以及因此治疗方案是具有挑战性的。在本文中,我们提出了一种数据驱动的动态方法,用于鉴定慢性疾病的轨迹阶段,从而提出治疗方案。具体而言,我们开发了一种新颖的变量持续型副物隐藏的马尔可夫模型(VDC-HMMX)。在我们的VDC-HMMX中,该轨迹被建模为一系列具有急性,稳定和不稳定相的潜在状态,这些状态最终被回收。我们根据纵向研究证明了VDC-HMMX模型的有效性,其中928例患有下背部疼痛的患者。近视分类器以平衡的精度略高于70%,以识别正确的治疗方案。相比之下,我们的VDC-HMMX模型是正确的,平衡精度为83.65%。因此,这突出了纵向监测对慢性疾病管理的价值。

In order to deliver effective care, health management must consider the distinctive trajectories of chronic diseases. These diseases recurrently undergo acute, unstable, and stable phases, each of which requires a different treatment regimen. However, the correct identification of trajectory phases, and thus treatment regimens, is challenging. In this paper, we propose a data-driven, dynamic approach for identifying trajectory phases of chronic diseases and thus suggesting treatment regimens. Specifically, we develop a novel variable-duration copula hidden Markov model (VDC-HMMX). In our VDC-HMMX, the trajectory is modeled as a series of latent states with acute, stable, and unstable phases, which are eventually recovered. We demonstrate the effectiveness of our VDC-HMMX model on the basis of a longitudinal study with 928 patients suffering from low back pain. A myopic classifier identifies correct treatment regimens with a balanced accuracy of slightly above 70%. In comparison, our VDC-HMMX model is correct with a balanced accuracy of 83.65%. This thus highlights the value of longitudinal monitoring for chronic disease management.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源