论文标题
CVM-Cervix:使用CNN,Visual Transferer和MultyRayer感知器的混合宫颈宫颈饰面图像分类框架
CVM-Cervix: A Hybrid Cervical Pap-Smear Image Classification Framework Using CNN, Visual Transformer and Multilayer Perceptron
论文作者
论文摘要
宫颈癌是全球所有癌症中第七大癌症,也是女性中第四大常见的癌症。宫颈细胞病理学图像分类是诊断宫颈癌的重要方法。细胞病理学图像的手动筛选是耗时的,容易出错。自动计算机辅助诊断系统的出现解决了这一问题。本文提出了一个基于深度学习以执行宫颈细胞分类任务的框架,称为CVM-Cervix。它可以快速,准确地分析PAP幻灯片。 CVM-Cervix首先提出了一个卷积神经网络模块和一个用于本地和全局特征提取的视觉变压器模块,然后旨在融合最终分类的本地和全局特征。实验结果表明,在宫颈涂片图像分类领域,提出的CVM-Cervix的有效性和潜力。此外,根据临床工作的实际需求,我们进行了轻巧的后处理以压缩模型。
Cervical cancer is the seventh most common cancer among all the cancers worldwide and the fourth most common cancer among women. Cervical cytopathology image classification is an important method to diagnose cervical cancer. Manual screening of cytopathology images is time-consuming and error-prone. The emergence of the automatic computer-aided diagnosis system solves this problem. This paper proposes a framework called CVM-Cervix based on deep learning to perform cervical cell classification tasks. It can analyze pap slides quickly and accurately. CVM-Cervix first proposes a Convolutional Neural Network module and a Visual Transformer module for local and global feature extraction respectively, then a Multilayer Perceptron module is designed to fuse the local and global features for the final classification. Experimental results show the effectiveness and potential of the proposed CVM-Cervix in the field of cervical Pap smear image classification. In addition, according to the practical needs of clinical work, we perform a lightweight post-processing to compress the model.