论文标题
Stopnet:可扩展的轨迹和城市自动驾驶的占用预测
StopNet: Scalable Trajectory and Occupancy Prediction for Urban Autonomous Driving
论文作者
论文摘要
我们介绍了一种运动预测(行为预测)方法,该方法满足了在密集的城市环境中自动驾驶的潜伏要求,而无需牺牲准确性。全景稀疏输入表示可以使停车网缩放以预测数百种具有可靠延迟的道路代理的轨迹。除了预测轨迹外,我们的场景还可以预测全景概率占用网格,这是一种适合繁忙城市环境的互补输出表示。占用网格使AV可以集体推论代理组的行为,而无需处理其各个轨迹。我们在三个数据集的计算和准确性方面证明了我们稀疏输入表示的有效性和模型的有效性。我们进一步表明,在标准指标下,共同训练一致的轨迹和占用预测会改善最先进的性能。
We introduce a motion forecasting (behavior prediction) method that meets the latency requirements for autonomous driving in dense urban environments without sacrificing accuracy. A whole-scene sparse input representation allows StopNet to scale to predicting trajectories for hundreds of road agents with reliable latency. In addition to predicting trajectories, our scene encoder lends itself to predicting whole-scene probabilistic occupancy grids, a complementary output representation suitable for busy urban environments. Occupancy grids allow the AV to reason collectively about the behavior of groups of agents without processing their individual trajectories. We demonstrate the effectiveness of our sparse input representation and our model in terms of computation and accuracy over three datasets. We further show that co-training consistent trajectory and occupancy predictions improves upon state-of-the-art performance under standard metrics.