论文标题
具有梯度指导采样的大脑MR图像的启发性注释
Suggestive Annotation of Brain MR Images with Gradient-guided Sampling
论文作者
论文摘要
近年来,近年来,机器学习已被广泛用于医学图像分析,鉴于其在图像细分和分类任务中的表现有希望。机器学习的成功,特别是受监督的学习,取决于手动注释数据集的可用性。对于医学成像应用,此类注释的数据集并不容易获取,需要大量的时间和资源来策划带注释的医学图像集。在本文中,我们为大脑MR图像提出了一个有效的注释框架,该框架可以为人类专家提供信息的示例图像。我们在两个不同的大脑图像分析任务上评估了框架,即脑肿瘤分割和整个大脑分割。实验表明,对于Brats 2019数据集中的脑肿瘤分割任务,训练只有7%的分割模型,只有7%提出注释的图像样本可以实现与完整数据集中培训相当的性能。对于MALC数据集上的全脑部分割,具有42%的培训建议,带有注释的图像样本可以实现与完整数据集中培训相当的性能。提出的框架展示了一种有希望的方法来节省手动注释成本并提高医学成像应用中的数据效率。
Machine learning has been widely adopted for medical image analysis in recent years given its promising performance in image segmentation and classification tasks. The success of machine learning, in particular supervised learning, depends on the availability of manually annotated datasets. For medical imaging applications, such annotated datasets are not easy to acquire, it takes a substantial amount of time and resource to curate an annotated medical image set. In this paper, we propose an efficient annotation framework for brain MR images that can suggest informative sample images for human experts to annotate. We evaluate the framework on two different brain image analysis tasks, namely brain tumour segmentation and whole brain segmentation. Experiments show that for brain tumour segmentation task on the BraTS 2019 dataset, training a segmentation model with only 7% suggestively annotated image samples can achieve a performance comparable to that of training on the full dataset. For whole brain segmentation on the MALC dataset, training with 42% suggestively annotated image samples can achieve a comparable performance to training on the full dataset. The proposed framework demonstrates a promising way to save manual annotation cost and improve data efficiency in medical imaging applications.